Current state-of-the-art tools for analysing extracellular vesicles (EVs) offer either highly sensitive but unidimensional bulk measurements of EV components, or high-resolution multiparametric single-particle analyses which lack standardization and appropriate reference materials. This limits the accuracy of the assessment of marker abundance and overall marker distribution amongst individual EVs, and finally, the understanding of true EV heterogeneity. In this study, we aimed to define the standardized operating procedures and reference material for fluorescent characterization of EVs with two commonly used EV analytical platforms-nanoparticle tracking analysis (NTA) and nano-flow cytometry (nFCM).
View Article and Find Full Text PDFEndometriosis is a chronic inflammatory condition characterized by the presence of endometrium-like tissue outside the uterus, primarily affecting pelvic organs and tissues. In this study, we explored platelet activation in endometriosis. We utilized the STRING database to analyze the functional interactions among proteins previously identified in small extracellular vesicles (EVs) isolated from the peritoneal fluid of endometriosis patients and controls.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are mediators of intercellular communication, recently recognised for their clinical applications. Accurate characterisation and quantification of EVs are critical for understanding of their function and clinical relevance. Many platforms utilise fluorescence for EV characterisation, frequently labelling surface proteins to identify EVs.
View Article and Find Full Text PDFIntroduction: This study explores the transformative effects of the Community Plunge, an educational program at the Wake Forest University School of Medicine (WFUSOM), on healthcare delivery, community engagement, and trainee perspectives. It addresses the broader context of health outcomes, where clinical care only accounts for 20%, emphasizing the critical role of social determinants of health (SDOH) and individual behaviors in the remaining 80%.
Methods: WFUSOM's Community Plunge, established in 2002, involves a guided tour of the community, discussions with residents, and debriefing sessions.
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder which commonly causes neoplasms leading to disfigurement or dysfunction. Mitogen-activated protein kinase inhibitors (MEKi) are generally well-tolerated treatments which target neural tumor progression in patients with NF1. However, cutaneous adverse events (CAEs) are common and may hinder patients' abilities to remain on treatment, particularly in children.
View Article and Find Full Text PDFObjectives: (1) To evaluate the effectiveness of a curriculum on physician assistant (PA) students' knowledge about opioid use disorder (OUD) treatment and management and (2) present student satisfaction with the curriculum.
Methods: Three cohorts of PA students completed pre- and post-intervention questionnaires about their knowledge of motivational interviewing (MI) for OUD. One cohort of students completed the 11-item questionnaire without exposure to the intervention (control group).
Extracellular vesicles (EVs) are increasingly being analyzed by flow cytometry. Yet their minuscule size and low refractive index cause the scatter intensity of most EVs to fall below the detection limit of most flow cytometers. A new class of devices, known as spectral flow analyzers, are becoming standards in cell phenotyping studies, largely due to their unique capacity to detect a vast panel of markers with higher sensitivity for light scatter detection.
View Article and Find Full Text PDFMagnetosomes are biologically-derived magnetic nanoparticles (MNPs) naturally produced by magnetotactic bacteria (MTB). Due to their distinctive characteristics, such as narrow size distribution and high biocompatibility, magnetosomes represent an attractive alternative to existing commercially-available chemically-synthesized MNPs. However, to extract magnetosomes from the bacteria, a cell disruption step is required.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a promising cell population for regenerative medicine applications, where paracrine signalling through the extracellular vesicles (EVs) regulates bone tissue homeostasis and development. MSCs are known to reside in low oxygen tension, which promotes osteogenic differentiation via hypoxia-inducible factor-1α activation. Epigenetic reprogramming has emerged as a promising bioengineering strategy to enhance MSC differentiation.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have emerged as biocompatible drug delivery vehicles due to their native ability to deliver bioactive cargo to recipient cells. However, the application of EVs as a therapeutic delivery vehicle is hampered by effective methods for endogenously loading target proteins inside EVs and unloading proteins after delivery to recipient cells. Most EV-based engineered loading methods have a limited delivery efficiency owing to their inefficient endosomal escape or cargo release from the intraluminal attachment from the EV membrane.
View Article and Find Full Text PDFIn ovarian cancer, ascites represent the microenvironment in which the platelets extravasate to play their role in the disease progression. We aimed to develop an assay to measure ascites' platelet activation. We enriched small extracellular vesicles (EVs) (40-200 nm) from ascites of high-grade epithelial ovarian cancer patients ( = 12) using precipitation with polyethylene glycol, and we conducted single-particle phenotyping analysis by nano-flow cytometry after labelling and ultra-centrifugation.
View Article and Find Full Text PDFSingle particle characterization has become increasingly relevant for research into extracellular vesicles, progressing from bulk analysis techniques and first-generation particle analysis to comprehensive multi-parameter measurements such as nano-flow cytometry (nFCM). nFCM is a form of flow cytometry that utilizes instrumentation specifically designed for nano-particle analysis, allowing for thousands of EVs to be characterized per minute both with and without the use of staining techniques. High resolution side scatter (SS) detection allows for size and concentration to be determined for all biological particles larger than 45 nm, while simultaneous fluorescence (FL) detection identifies the presence of labeled markers and targets of interest.
View Article and Find Full Text PDFThe immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis.
View Article and Find Full Text PDFJ Physician Assist Educ
June 2022
Purpose: The psychological effects of COVID-19 have been extensive and have affected health care workers and educators alike. The aims of this study were to evaluate how the COVID-19 pandemic has impacted PA faculty and their attitudes toward work.
Methods: Two quantitative, pre/post surveys were offered to 21 PA faculty at one institution prior to and then one year into the COVID-19 pandemic.
Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs' potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs.
View Article and Find Full Text PDFExtracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs.
View Article and Find Full Text PDFNeural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles.
View Article and Find Full Text PDF