Publications by authors named "Pazour G"

In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.

View Article and Find Full Text PDF

Polycystic kidney disease (PKD) is an important cause of kidney failure, but treatment options are limited. While later stages of the disease have been extensively studied, mechanisms driving the initial conversion of kidney tubules into cysts are not understood. To identify genes with the potential to promote cyst initiation, we deleted polycystin-2 (Pkd2) in mice and surveyed transcriptional changes before and immediately after cysts developed.

View Article and Find Full Text PDF

mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known.

View Article and Find Full Text PDF

In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.

View Article and Find Full Text PDF

The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT).

View Article and Find Full Text PDF

Ciliary dysfunction causes a large group of developmental and degenerative human diseases known as ciliopathies. These diseases reflect the critical roles that cilia play in sensing the environment and in force generation for motility. Sensory functions include our senses of vision and olfaction.

View Article and Find Full Text PDF

In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments.

View Article and Find Full Text PDF

Unlabelled: Polycystic kidney disease (PKD) is an important cause of end stage renal disease, but treatment options are limited. While later stages of the disease have been extensively studied, mechanisms driving the initial conversion of renal tubules into cysts are not understood. To identify factors that promote the initiation of cysts we deleted polycystin-2 ( ) in mice and surveyed transcriptional changes before and immediately after cysts developed.

View Article and Find Full Text PDF

Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly.

View Article and Find Full Text PDF

Ciliopathies are associated with wide spectrum of structural birth defects (SBD), indicating important roles for cilia in development. Here we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in , an intraflagellar transport protein regulating ciliogenesis. deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula, randomized heart looping, congenital heart defects (CHD), lung hypoplasia, renal anomalies, and polydactyly.

View Article and Find Full Text PDF

Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs.

View Article and Find Full Text PDF

Motile and non-motile cilia are critical to mammalian development and health. Assembly of these organelles depends on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). A series of human and mouse variants were studied to understand the function of this IFT subunit.

View Article and Find Full Text PDF

During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo.

View Article and Find Full Text PDF

The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive.

View Article and Find Full Text PDF

Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people and is caused by mutations in the transmembrane proteins polycystin-1 (Pkd1) and polycystin-2 (Pkd2). The mechanisms by which polycystin mutations induce cyst formation are not well understood, however pro-proliferative signaling must be involved for tubule epithelial cell number to increase over time.

View Article and Find Full Text PDF

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals.

View Article and Find Full Text PDF

Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest.

View Article and Find Full Text PDF

Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people. It primarily is caused by mutations in the transmembrane proteins polycystin-1 (Pkd1) and polycystin-2 (Pkd2).

View Article and Find Full Text PDF

Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models.

View Article and Find Full Text PDF

The Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels.

View Article and Find Full Text PDF

Microenvironmental signals produced during development or inflammation stimulate lymphatic endothelial cells to undergo lymphangiogenesis, in which they sprout, proliferate, and migrate to expand the vascular network. Many cell types detect changes in extracellular conditions via primary cilia, microtubule-based cellular protrusions that house specialized membrane receptors and signaling complexes. Primary cilia are critical for receipt of extracellular cues from both ligand-receptor pathways and physical forces such as fluid shear stress.

View Article and Find Full Text PDF

Primary cilia are sensory organelles present on most vertebrate cells and are critical for development and health. Ciliary dysfunction is associated with a large class of human pathologies collectively known as ciliopathies. These include cystic kidneys, blindness, obesity, skeletal malformations, and other organ anomalies.

View Article and Find Full Text PDF

In the absence of Hedgehog ligand, patched-1 (Ptch1) localizes to cilia and prevents ciliary accumulation and activation of smoothened (Smo). Upon ligand binding, Ptch1 is removed from cilia, and Smo is derepressed and accumulates in cilia where it activates signaling. The mechanisms regulating these dynamic movements are not well understood, but defects in intraflagellar transport components, including Ift27 and the BBSome, cause Smo to accumulate in cilia without pathway activation.

View Article and Find Full Text PDF

Some Rab GTPases, after activation by GDP to GTP exchange, are phosphorylated by the LRRK2 kinase implicated in Parkinson's disease. In the current issue of Structure, Waschbüsch et al. (2020) investigate the structural basis for recognition of active phospho-Rab GTPases by the RH2 domain of the effector protein RILPL2.

View Article and Find Full Text PDF

Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle.

View Article and Find Full Text PDF