Publications by authors named "Pazos-Moura C"

Aims: Investigate the impact of hypothyroidism on mitochondrial dynamics and mitophagy in the heart under fed and fasting conditions.

Methods: Hypothyroidism was induced in male Wistar rats with methimazole (0.03 %) for 21 days.

View Article and Find Full Text PDF

The small intestine, including the endocannabinoid system (ECS), regulates the energy homeostasis. If maternal obesity modifies the intestinal ECS of the offspring favoring metabolic disorders throughout life is unexplored. Regardless maternal insults, overaction of the ECS has been related to obesity, mainly via type 1 cannabinoid receptor (CB1) signaling, while type 2 cannabinoid receptor (CB2) signaling and the endocannabinoid-like compounds, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), have been associated with anti-inflammatory effects.

View Article and Find Full Text PDF

Maternal obesity during perinatal period increases the risk of metabolic and behavioral deleterious outcomes in the offspring, since it is critical for brain development, maturation, and reorganization. These processes are highly modulated by the endocannabinoid system (ECS), which comprises the main lipid ligands anandamide and 2-arachidonoylglycerol, cannabinoid receptors 1 and 2 (CB1R and CB2R), and several metabolizing enzymes. The ECS is overactivated in obesity and it contributes to the physiological activity of the hypothalamus-pituitary-adrenal (HPA) axis, promoting stress relief.

View Article and Find Full Text PDF

Purpose: Maternal high-fat diet (HF) programs obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), hypertriglyceridemia, and hyperglycemia associated with increased endocannabinoid system (ECS) in the liver of adult male rat offspring. We hypothesized that maternal HF would induce sex specific ECS changes in the liver of newborn rats, prior to obesity onset, and maternal fish oil (FO) supplementation would reprogram the ECS and lipid metabolism markers preventing liver triglycerides (TG) accumulation.

Methods: Female rats received a control (CT) (10.

View Article and Find Full Text PDF

Introduction: Maternal high-fat (HF) diet during gestation and lactation programs obesity in rat offspring associated with sex-dependent and tissue-specific changes of the endocannabinoid system (ECS). The ECS activation induces food intake and preference for fat as well as lipogenesis. We hypothesized that maternal HF diet would increase the lipid endocannabinoid levels in breast milk programming cannabinoid and dopamine signaling and food preference in rat offspring.

View Article and Find Full Text PDF

Purpose: Adolescence is a critical period of increased vulnerability to nutritional modifications, and adolescents may respond differently from adults to dietary intake and nutraceuticals. Cinnamaldehyde, a major bioactive compound of cinnamon, improves energy metabolism, as has been shown in studies conducted primarily in adult animals. We hypothesized that cinnamaldehyde treatment may have a higher impact on the glycemic homeostasis of healthy adolescent rats than on healthy adult rats.

View Article and Find Full Text PDF

Scope: Perinatal maternal moderately high-fat diet (mHFD) is associated with obesity and fatty liver disease in offspring, and maternal fish oil (FO: n-3 PUFA source) supplementation may attenuate these disorders. This study evaluates the effects of FO given to pregnant rats fed a mHFD on the offspring's liver at weaning.

Methods And Results: Female Wistar rats receive an isoenergetic, control (CT: 10.

View Article and Find Full Text PDF

The increasing incidence of metabolic diseases is in part due to the high fructose consumption, a carbohydrate vastly used in industry, with a potent lipogenic capacity. Thyroid hormones (TH) are essential for metabolism regulation and are associated with changes in body weight, energy expenditure, insulin sensitivity, and dyslipidemia. This study aimed to investigate the influence of fructose intake on thyroid function and thyroid-related genes.

View Article and Find Full Text PDF

Aims: Perinatal maternal hypercaloric diets increase the susceptibility to metabolic disorders in the offspring. We hypothesized that maternal intake of an isocaloric moderate-fat diet (mMFD) would disturb the glucose homeostasis and favor the β-cell failure in response to fructose overload in adult male offspring.

Methods: Female Wistar rats received an isocaloric diet (3.

View Article and Find Full Text PDF

Aims: The endocannabinoid system (ECS) increases food intake, appetite for fat and lipogenesis, while decreases energy expenditure (thermogenesis), contributing to metabolic dysfunctions. We demonstrated that maternal high-fat diet (HFD) alters cannabinoid signaling in brown adipose tissue (BAT) of neonate and weanling male rat offspring, which have increased adiposity but also higher energy expenditure in adulthood. In this study, the main objective was to investigate the ECS expression in thermogenic tissues as BAT and skeletal muscle of adult rats programmed by maternal HFD.

View Article and Find Full Text PDF

Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning.

View Article and Find Full Text PDF

Early obesity is a serious health problem and nutritional therapeutic strategies during young age may improve health outcomes throughout life. Cinnamaldehyde, the major component of cinnamon, exhibits several beneficial metabolic effects. Here we tested the impact of cinnamaldehyde treatment during adolescence in a rat model of obesity programmed by early overnutrition, addressing white (WAT) and brown adipose tissue (BAT).

View Article and Find Full Text PDF

Scope: Perinatal maternal obesity and excessive fructose consumption have been associated with liver metabolic diseases. The study investigates whether moderate maternal high-fat diet affects the liver mitochondria responses to fructose intake in adult offspring.

Methods And Results: Wistar female rats have received a standard diet (mSTD) or high-fat diet (mHFD) (9% and 28.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a high-fat diet in pregnant rats influences obesity and endocannabinoid signaling in their offspring.
  • Maternal high-fat diets led to increased fat mass and cellular changes in the adipose tissue of female offspring, linked to heightened cannabinoid receptor levels.
  • The results suggest that targeting endocannabinoid signaling may be a potential strategy for treating obesity, particularly in females affected by maternal diet.
View Article and Find Full Text PDF

Metabolic syndrome (MetS) and thyroid dysfunction are common in clinical practice. The objectives of this review are to discuss some proposed mechanisms by which thyroid dysfunctions may lead to MetS, to describe the bidirectional relationship between thyroid hormones (THs) and adiposity and finally, to resume a list of recent studies in humans that evaluated possible associations between thyroid hormone status and MetS or its clinical components. Not solely THs, but also its metabolites regulate metabolic rate, influencing adiposity.

View Article and Find Full Text PDF

Scope: Non-alcoholic fatty liver disease (NAFLD) among adolescents has been related to fructose intake. Additionally, maternal high-fat diet (mHFD) increases the offspring susceptibility to NAFLD at adulthood. Here, it is hypothesized that mHFD may exacerbate the fructose impact in adolescent male rat offspring, by changing the response of contributing mechanisms to liver injury.

View Article and Find Full Text PDF

Nutrition at early stages of life contributes to the alarming incidence of childhood obesity, insulin resistance and hepatoesteatosis. Cinnamaldehyde, major component of cinnamon, increases insulin sensitivity and modulates adiposity and lipid metabolism. The aim of this study was to analyze the impact of cinnamaldehyde treatment during adolescence in a rat model of early obesity.

View Article and Find Full Text PDF
Article Synopsis
  • Female NB-R-knockout mice showed resistance to weight gain on a high-fat diet, suggesting NB-R plays a role in fat accumulation.
  • Experiments with adipose stem cells and preadipocyte 3T3-L1 cells indicated that blocking NB-R led to lower cell numbers, reduced cell growth, and decreased fat content, pointing to NB-R's importance in promoting adipocyte differentiation.
View Article and Find Full Text PDF

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood.

View Article and Find Full Text PDF

Maternal nutritional imbalances trigger developmental adaptations involving early epigenetic mechanisms associated with adult chronic disease. Maternal high-fat (HF) diet promotes obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Leptin resistance is associated with over activation of the endocannabinoid system (ECS).

View Article and Find Full Text PDF

Maternal diet plays a critical role in health development. Perinatal overnutrition induces metabolic dysfunctions and obesity in the offspring. Obesity is associated with endocannabinoid system (ECS) over activation and oxidative stress.

View Article and Find Full Text PDF

Purpose: Studies with foods, known to promote health benefits in addition to the nutritive value, show that their consumption by pregnant and/or lactating females could induce negative outcomes to the offspring. It is well characterized that cinnamon intake promotes benefits to energy homeostasis. The present study aimed to analyze the effects of the consumption of an aqueous extract of cinnamon by lactating female rats on the endocrine-metabolic outcomes in the adult offspring.

View Article and Find Full Text PDF

The modern concept of thyroid disruptors includes man-made chemicals and bioactive compounds from food that interfere with any aspect of the hypothalamus-pituitary-thyroid axis, thyroid hormone biosynthesis and secretion, blood and transmembrane transport, metabolism and local action of thyroid hormones. This review highlights relevant disruptors that effect populations through their diet: directly from food itself (fish oil and polyunsaturated fatty acids, pepper, coffee, cinnamon and resveratrol/grapes), through vegetable cultivation (pesticides) and from containers for food storage and cooking (bisphenol A, phthalates and polybrominated diphenyl ethers). Due to the vital role of thyroid hormones during every stage of life, we review effects from the gestational period through to adulthood, including evidence from in vitro studies, rodent models, human trials and epidemiological studies.

View Article and Find Full Text PDF

Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes.

View Article and Find Full Text PDF

Early life inadequate nutrition triggers developmental adaptations and adult chronic disease. Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood. Obesity is related to over active endocannabinoid system (ECS).

View Article and Find Full Text PDF