Publications by authors named "Pazik R"

In this work, we are showing the results of the X- and Q-band electron magnetic resonance measurements of ultra-small ZnMnFeO nanoparticles ( 8 nm) with a very narrow size distribution. The chosen synthetic route allows for precise structural modifications with a broad concentration range ( = 0, 0.2, 0.

View Article and Find Full Text PDF

In recent years, there has been a significant increase in interest in the use of curdlan, a naturally derived polymer, for medical applications. However, it is relatively inactive, and additives increasing its biomedical potential are required; for example, antibacterial compounds, magnetic particles, or hemostatic agents. The stability of such complex constructs may be increased by additional functional networks, for instance, polycatecholamines.

View Article and Find Full Text PDF

Different types of ferrite core-shell structures, namely CoFeO@CoFeO, CoFeO@FeO, CoFeO@MnFeO, and CoFeO@MnFeO@ZnFeO, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, , temperature, time, and solvent.

View Article and Find Full Text PDF

Multipurpose FeO@APTES-Ag heterostructures for mutual heat generation, SERS probing, and antimicrobial activity were fabricated using a three-step process. Silver metallic particles were precipitated on a thin silica shell that served as an interlayer with FeO nanocubes. The structural properties were studied by means of the powder X-ray diffraction technique, and selected area electron diffraction.

View Article and Find Full Text PDF

Magnetic nanoparticle (MNP) anisotropy has been tailored by the preparation of MNPs having different shapes (star-like, cubic, and polyhedral) using a self-modified rapid hot-injection process. The surface modification of MNPs was performed through etidronic ligand grafting with a strong binding affinity to mixed metal oxides, ensuring sufficient colloidal stability, surface protection, and minimized aggregation and interparticle interactions. The heating effect was induced by contactless external stimulation through the action of an alternating magnetic field and NIR laser radiation (808 nm).

View Article and Find Full Text PDF

Osteoporosis is characterized by the reduction of bone mineral density and the weakness of the bone strength leading to fractures. Searching for new compounds that stimulate bone activity and their ability to reconstruct seems to be a promising tool in osteoporosis treatment. Here, we performed analyses comparing the impact of polyrhodanine (PRHD) and its derivatives on the viability (anti-proliferative tests), morphology and mitochondrial network (confocal microscopy) towards pre-osteoblasts (MC3T3-E1 cell line) and osteoclasts (4B12 cell line).

View Article and Find Full Text PDF

The rapid hot-injection (HI) technique was employed to synthesize magnetic nanoparticles with well-defined morphology (octahedrons, cubes, and star-like). It was shown that the proposed synthetic approach could be an alternative for the heat-up and flow hot-injection routes. Instant injection of the precursor to the hot reaction mixture (solvent(s) and additives) at high temperatures promotes fast nucleation and particle directional growth towards specific morphologies.

View Article and Find Full Text PDF

The prevalence of osteoporosis in recent years is rapidly increasing. For this reason, there is an urgent need to develop bone substitutes and composites able to enhance the regeneration of damaged tissues which meet the patients' needs. In the case of osteoporosis, personalized, tailored materials should enhance the impaired healing process and restore the balance between osteoblast and osteoclast activity.

View Article and Find Full Text PDF

Multimodal polymer encapsulated CdSe/FeO nanoplatforms with dual optical and magnetic properties have been fabricated. We demonstrate that CdSe/FeO nanocapsules (NCs) upon excitation with UV radiation or NIR fs-laser excitation exhibit intense one- or two-photon emission at 535 nm, whereas the combination of an alternating magnetic field and 808 nm IR laser excitation results in heat generation. Since anticancer therapies require relatively high doses of FeO nanoparticles (NPs) to induce biologically relevant temperature jumps, the therapeutic effects of 0.

View Article and Find Full Text PDF

The PRHD@MnFeO binary hybrids have shown a potential for applications in the biomedical field. The polymer cover/shell provides sufficient surface protection of magnetic nanoparticles against adverse effects on the biological systems, e.g.

View Article and Find Full Text PDF

The ternary HAp/curdlan/nanomagnetite hybrids with ceramic and polymer phase incorporation of magnetite nanoparticles (MNPs) were fabricated to study their heating ability under action of the alternating magnetic field (AMF), 808 nm near infrared laser radiation (NIR) and their synergic stimulation. The energy conversion was evaluated in terms of the specific absorption rate (SAR) as a function of the MNPs concentration in composites and to estimate their potential in temperature-controlled regenerative processes and hyperthermia. Measurements were carried out on dry and Ringer's solution soaked composite materials in order to mimic in situ conditions.

View Article and Find Full Text PDF

Silver nanoparticles were synthesized with the laser-assisted wet chemical approach at room temperature. The effect of light exposure on the silver nanoparticles' spatial parameters shaping the localized surface plasmon resonance has been evaluated. The optical, structural and morphological characterizations of the Ag nanostructures were conducted with UV-VIS-NIR spectrophotometry, DLS and TEM techniques.

View Article and Find Full Text PDF

Magnetic nanoparticles of FeO doped by different amounts of Y (0, 0.1, 1, and 10%) ions were designed to obtain maximum heating efficiency in magnetic hyperthermia for cancer treatment. Single-phase formation was evident by X-ray diffraction measurements.

View Article and Find Full Text PDF

Magnetite nanoparticles (MNPs) were synthesized using two distinctly different approaches, co-precipitation (CP) and thermal decomposition (TD), and further surface functionalized with organophosphonic ligands containing different numbers of phosphonic groups. We have shown that it is possible to fabricate flower-like assemblies of MNPs through TD at lower temperatures, whereas CP MNPs formed agglomerates of particles with broad size distribution and irregular shapes. The effect of the organophosphonic ligands on the heating efficiency of the TD and CP MNPs under dual mode stimulation (simultaneous action of AMF and NIR laser radiation) was studied for the first time.

View Article and Find Full Text PDF

Cellular senescence may contribute to aging and age-related diseases and senolytic drugs that selectively kill senescent cells may delay aging and promote healthspan. More recently, several categories of senolytics have been established, namely HSP90 inhibitors, Bcl-2 family inhibitors and natural compounds such as quercetin and fisetin. However, senolytic and senostatic potential of nanoparticles and surface-modified nanoparticles has never been addressed.

View Article and Find Full Text PDF

The PMMA@CoNiFeO ferrite containing hybrid nanomaterials with hyamine were prepared using emulsion polymerization method. Structural and morphological properties were evaluated using XRD, FT-IR, SEM techniques. The TGA and DTA analysis were performed in order to study the thermal properties of hybrid materials in contrast to reference material.

View Article and Find Full Text PDF

Cobalt manganese ferrite nanoparticles have application potential in the biomedical field, however there is limited information concerning the biological response. The aim of this work was to investigate the cytotoxic potential of cobalt-manganese ferrite nanoparticles in canine mastocytoma tumor cells (C2) and adipose-derived mesenchymal stromal stem cells (ASCs) cultured under a static magnetic field (MF). In this study, we investigated the viability and proliferation rate of ASC and C2 cells cultured with CoMnFeO nanoparticles under 0.

View Article and Find Full Text PDF

Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products.

View Article and Find Full Text PDF

An assessment of biomaterial cytotoxicity is a prerequisite for evaluation of its clinical potential. A material is considered toxic while the cell viability decreases under 70% of the control. However, extracts of certain materials are likely to reduce the cell viability due to the intense ions adsorption from culture medium (e.

View Article and Find Full Text PDF

A series of highly crystalline orthoferrite nanoparticles (type La(1-x)Gd(x)FeO3, where x = 0 to 1) were prepared using the self-combustion method. Extensive studies including X-ray diffraction, Rietveld refinement and Fourier transform infrared spectroscopy as well as Raman spectroscopy confirmed the orthorhombic space group Pnma of the obtained materials. The calculated average grain size for powders is in the range of 30 to 80 nm.

View Article and Find Full Text PDF

SrTiO3 nanoparticles co-doped with a broad concentration range of Er(3+) and Yb(3+) ions were fabricated using the citric route as a function of annealing temperatures of 500-1000 °C. The effect of a broad co-dopant concentration range and sintering temperature on structural and up-conversion properties was investigated in detail by X-ray diffraction techniques and optical spectroscopy. The TEM technique was used to estimate the mean particle size, which was around 30 nm for the inorganic product annealed at 600 °C.

View Article and Find Full Text PDF

Nanocrystalline chlorapatites (Ca10(PO4)6Cl2) doped with lanthanide ions (Eu(3+), Er(3+) and Yb(3+)) and co-doped with silver ions (Ag(+)) were synthesized by a hydrothermal synthesis route. XRD, TEM, and SAED measurements indicated that the powders are single phased and crystallize with a hexagonal structure with good dispersion. The results showed well crystallized chlorapatite grains with a diameter of about 45 nm.

View Article and Find Full Text PDF

Interaction of lanthanum isopropoxide with molybdenum(VI) alkoxides in La/Mo ratios varying from 3:1 to 1:1 in acetophenon or allyl alcohol as solvents offers nanosized poorly crystalline products of complex composition, where the precipitation of Mo-rich ones is followed by the formation of La-rich ones with conservation of the reaction stoichiometry in total. Thermal treatment of the precipitates at temperatures over 700 °C leads to the formation of stoichiometric phases of the α- and β-La2Mo2O9 compositions. Introduction of smaller Re(3+) cations such as Sm(3+) by doping favors stabilization of the La2-xRExMo2O9 phase with improved crystallinity even after lower-temperature thermal treatment.

View Article and Find Full Text PDF