Publications by authors named "Paz-Maldonado L"

Diclofenac is an emerging pollutant: toxic, persistent, and bioaccumulative, present in several environmental niches in a concentration of parts per million. This pharmaceutical's biological removal was reported with various fungal species, showing promissory results. This work aimed at diclofenac removal by individually challenging the fungal species , , and but triying to lower the biosorption nature of cell walls by NaCl addition.

View Article and Find Full Text PDF

Bioremediation with genetically modified microalgae is becoming an alternative to remove metalloids and metals such as cadmium, a contaminant produced in industrial processes and found in domestic waste. Its removal is important in several countries including Mexico, where the San Luis Potosi region has elevated levels of it. We generated a construct with a synthetic gene for γ-glutamylcysteine synthetase and employed it in the chloroplast transformation of .

View Article and Find Full Text PDF

pH variations influence the delivery of essential nutrients and CO solubility, which impact algae metabolism. In this study the microalgal growth and chlorophyll, lipid, and fatty acids content; along with the expression of some genes implicated in the biosynthesis of lipids were examined in Chlamydomonas reinhardtii subjected to pH values of 7.0, 7.

View Article and Find Full Text PDF

Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical-chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic.

View Article and Find Full Text PDF

An algae-based vaccine model against atherosclerosis was developed with positive findings in terms of antigen yield and immunogenicity in mouse. Several immunotherapies against atherosclerosis have been evaluated at the preclinical level thus far, with some of them currently under evaluation in clinical trials. In particular, the p210 epitope from ApoB100 is known to elicit atheroprotective responses.

View Article and Find Full Text PDF

Albendazole (ABZ) is a therapeutic benzimidazole used to treat giardiasis that targets β-tubulin. However, the molecular bases of ABZ resistance in Giardia duodenalis are not understood because β-tubulin in ABZ-resistant clones lacks mutations explaining drug resistance. In previous work we compared ABZ-resistant (1.

View Article and Find Full Text PDF

The high demand for less polluting, newer, and cheaper fuel resources has increased the search of the most innovative options for the production of the so-called biofuels. Chlamydomonas reinhardtii is a photosynthetic unicellular algae with multiple biotechnological advantages such as easy handling in the laboratory, a simple scale-up to industrial levels, as well as a feasible genetic modification at nuclear and chloroplast levels. Besides, its fatty acids can be used to produce biofuels.

View Article and Find Full Text PDF

Although the human immunodeficiency virus (HIV) causes one of the most important infectious diseases worldwide, attempts to develop an effective vaccine remain elusive. Designing recombinant proteins capable of eliciting significant and protective mammalian immune responses remain a priority. Moreover, large-scale production of proteins of interest at affordable cost remains a challenge for modern biotechnology.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications.

View Article and Find Full Text PDF

Background: Prickly pear cactus stem (nopal) has been used in folk medicine and a raw material since ancient times. Stems have been proved to possess components with valuable biological activities: anti inflamatory, antioxidant, antiulcerogenic, hypoglycemic, and so forth. Nowadays, people consume foods not only to cover the nutritional requirements, they also demand for healty, natural and convenient foods that show biological activity.

View Article and Find Full Text PDF

A synthetic human interferon gamma (hIFN-gamma) gene was fused to SP1 and SP3, two Sec-dependent artificial signal peptides to transport the hIFN-gamma to the periplasm of Escherichia coli BL21-SI. The processing efficiency of both SP1-hIFN-gamma and SP3-hIFN-gamma was dependent on the culture medium as well as the post-induction temperature. Both precursors were processed completely when cells were cultured using minimal medium and a post-induction temperature of 32.

View Article and Find Full Text PDF

Production of periplasmic human interferon-gamma (hINF-gamma) and human interleukin-2 (hIL-2) by the Tat translocation pathway in Escherichia coli BL21-SI was evaluated. The expression was obtained using the pEMR vector which contains the Tat-dependent modified penicillin acylase signal peptide (mSPpac) driven by the T7 promoter. The mSPpac-hINF-gamma was processed and the protein was transported to periplasm.

View Article and Find Full Text PDF