Publications by authors named "Payza K"

Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to -opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting -opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol.

View Article and Find Full Text PDF

Purinergic receptor P2X3 has been linked to analgesia in a number of pre-clinical models of pain, and is expressed in the human pain perception pathway. Only few P2X3-selective antagonists have been reported to date. This Letter describes the SAR and in vivo analgesic profile of a novel scaffold of selective P2X3 antagonists.

View Article and Find Full Text PDF

An oral, peripherally restricted CB1/CB2 agonist could provide an interesting approach to treat chronic pain by harnessing the analgesic properties of cannabinoids but without the well-known central side effects. γ-Carbolines are a novel class of potent mixed CB1/CB2 agonists characterized by attractive physicochemical properties including high aqueous solubility. Optimization of the series has led to the discovery of 29, which has oral activity in a rat inflammatory pain model and limited brain exposure at analgesic doses, consistent with a lower risk of CNS-mediated tolerability issues.

View Article and Find Full Text PDF

In the present article, we summarize the preclinical pharmacology of 4-{(R)-(3-aminophenyl)[4-(4-fluorobenzyl)-piperazin-1-yl]methyl}-N,N-diethylbenzamide (AZD2327), a highly potent and selective agonist of the δ-opioid receptor. AZD2327 binds with sub-nanomolar affinity to the human opioid receptor (K(i) = 0.49 and 0.

View Article and Find Full Text PDF

Neuromedin U (NMU), through its cognate receptor NMUR2 in the central nervous system, regulates several important physiological functions, including energy balance, stress response, and nociception. By random screening of our corporate compound collection with a ligand binding assay, we discovered (R)-5'-(phenylaminocarbonylamino)spiro[1-azabicyclo[2.2.

View Article and Find Full Text PDF

A series of 1-aminotetralin scaffolds was synthesized via metal-catalyzed ring-opening reactions of heterobicyclic alkenes. Small libraries of amides and amines were made using the amino group of each scaffold as a handle. Screening of these libraries against human opioid receptors led to the identification of (S)-(S)-5.

View Article and Find Full Text PDF

The preparation and evaluation of a novel class of CB2 agonists based on a benzimidazole moiety are reported. They showed binding affinities up to 1nM towards the CB2 receptor with partial to full agonist potencies. They also demonstrated good to excellent selectivity (>1000-fold) over the CB1 receptor.

View Article and Find Full Text PDF

The importance of visual imagery and relational thinking manifests itself in a heuristic approach to the design and synthesis of potential morphinomimetics as agonists of the human mu receptor. The well-known class of alkaloids represented by the isopavine nucleus has a topological resemblance to the morphine skeleton, especially when viewed in a particular way. Enantiopure isopavines can be readily obtained from a 1,2 Stevens rearrangement of 13-substituted dihydromethanodibenzoazocines, prepared in four steps from d- and l-amino acids.

View Article and Find Full Text PDF

Several peptide fragments are produced by proteolytic cleavage of the opioid peptide precursor proenkephalin A, and among these are a number of enkephalin fragments, in particular bovine adrenal medulla peptide 22 (BAM22). These peptide products have been implicated in diverse biological functions, including analgesia. We have cloned a newly identified family of 'orphan' G protein--coupled receptors (GPCRs) and demonstrate that BAM22 and a number of its fragments bind to and activate these receptors with nanomolar affinities.

View Article and Find Full Text PDF

Galanin exerts an inhibitory effect on locus coeruleus (LC) neurons via a postsynaptic, as yet unidentified galanin receptor. Using an in vitro intracellular recording technique the effect of two galanin receptor agonists on LC neurons was investigated. Bath application of [Sar(1), D-Ala(12)]gal(1-16)-NH(2) (AR-M961), an agonist both at galanin R1 and R2 (GALR1, GALR2) receptors, evoked a reversible membrane hyperpolarization and inhibition of spike discharge in all LC neurons tested (n=42).

View Article and Find Full Text PDF

Galanin is a 29-aa neuropeptide with a complex role in pain processing. Several galanin receptor subtypes are present in dorsal root ganglia and spinal cord with a differential distribution. Here, we describe a generation of a specific galanin R2 (GalR2) agonist, AR-M1896, and its application in studies of a rat neuropathic pain model (Bennett).

View Article and Find Full Text PDF

The design, synthesis and pharmacological evaluation of a novel class of Dmt-Tic dipeptide analogues are described. These resulting analogues bearing different C-terminal functionalities were found to bind to the human delta receptor with high affinity. One specific class of dipeptides bearing urea/thiourea functionalities showed partial to full activation of the delta receptor.

View Article and Find Full Text PDF

The design, synthesis, and pharmacological evaluation of a novel class of delta opioid receptor agonists, N, N-diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide (6a) and its analogues, are described. These compounds, formally derived from SNC-80 (2) by replacing the piperazine ring with a piperidine ring containing an exocyclic carbon carbon double bond, were found to bind with high affinity and exhibit excellent selectivity for the delta opioid receptor as full agonists. 6a, the simplest structure in the class, exhibited an IC(50) = 0.

View Article and Find Full Text PDF

Nonpeptide delta opioid agonists are analgesics with a potentially improved side-effect and abuse liability profile, compared to classical opioids. Andrews analysis of the NIH nonpeptide lead SNC-80 suggested the removal of substituents not predicted to contribute to binding. This approach led to a simplified lead, N, N-diethyl-4-[phenyl(1-piperazinyl)methyl]benzamide (1), which retained potent binding affinity and selectivity to the human delta receptor (IC(50) = 11 nM, mu/delta = 740, kappa/delta > 900) and potency as a full agonist (EC(50) = 36 nM) but had a markedly reduced molecular weight, only one chiral center, and increased in vitro metabolic stability.

View Article and Find Full Text PDF

The potent delta-opioid receptor antagonist H-2',6-L-tyrosine(Dmt)-1, 2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic-OH) exhibited partial inverse agonism (EC(50)=6.35 nM, E(max)=-18.87%) for [35S]GTPgammaS binding and H-Dmt-Tic-NH(2) was a neutral antagonist (no effect up to 30 microM).

View Article and Find Full Text PDF

delta-Opioid receptors, present in very high concentrations in striatum and overlying cortex, are thought to be involved in a number of processes, including analgesia, mood, reward, modulation of neuronal excitability, and alterations in neurotransmitter release. Given the localization of the receptors in motor circuits in brain, we thought it of interest to study the antiparkinson potential of delta-opioid receptor agonists. Rats were given unilateral 6-hydroxydopamine lesions of the nigrostriatal tract, and following recovery, were tested for rotational activity.

View Article and Find Full Text PDF

A series of Dmt-Tic analogues with substitution on the Tic aromatic ring has been synthesized and evaluated for opioid receptor affinity and activation. Incorporation of large hydrophobic groups at position 7 of Tic did not greatly alter the delta opioid receptor binding affinities of the dipeptides whereas substitution at position 6 substantially diminished their affinity. These modified Dmt-Tic peptides showed binding affinities as low as 2.

View Article and Find Full Text PDF

AR-M100613 ([I]-Dmt-c[-D-Orn-2-Nal-D-Pro-D-Ala-]) is the iodinated analog of a cyclic casomorphin previously shown to be a potent antagonist at the delta opioid receptor. Specific [125I]AR-M100613 binding to rat whole brain membranes was saturable, reversible, and best fit to a one-site model (Kd = 0.080 +/- 0.

View Article and Find Full Text PDF

The neuropeptide galanin is a 29- or 30-residue peptide whose physiological functions are mediated by G-protein-coupled receptors. Galanin's agonist activity has been shown to be associated with the N-terminal sequence, galanin(1-16). Conformational investigations previously carried out on full-length galanin have, furthermore, indicated the presence of a helical conformation in the neuropeptide's N-terminal domain.

View Article and Find Full Text PDF

Gene-knockout studies of melanin-concentrating hormone (MCH) and its effect on feeding and energy balance have firmly established MCH as an orexigenic (appetite-stimulating) peptide hormone. Here we identify MCH as the ligand for the orphan receptor SLC-1. The rat SLC-1 is activated by nanomolar concentrations of MCH and is coupled to the G protein G alpha i/o.

View Article and Find Full Text PDF

Enantiopure heterocyclic Boc-protected Phe-Gly dipeptidomimetics containing 1,3,4-oxadiazole, 1,2,4-oxadiazole, and 1,2,4-triazole ring systems have been synthesized as building blocks in the synthesis of pseudopeptides. Three derivatives (1-3) have the carboxylic acid function directly bound to the heterocyclic ring, and three derivatives (4-6) have an extra methylene group between the heterocyclic ring and the acid function to allow for an increased conformational flexibility. The mimetics were used as Phe-Gly replacements in the biologically active peptides dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) and substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-MetNH(2), SP).

View Article and Find Full Text PDF

We have identified a novel subtype of galanin receptor (GALR-2) in rat dorsal root ganglia and spinal cord. The open reading frame of GALR-2 is 1116 nucleotides long, encoding a protein of 372 amino acids with a theoretical molecular mass of 40.7 kD.

View Article and Find Full Text PDF

A cDNA encoding a thyrotropin-releasing hormone (TRH) receptor expressed in the pituitary was previously cloned (De La Pena, P., Delgado, L. M.

View Article and Find Full Text PDF

Pharmacological study of Phe-Met-Leu-Phe-amide (FMRFa) receptors is hindered by the lack of selective ligands. The classification of these selective ligands is further hampered by the limited availability of functional assays. In this study, we evaluated several synthetic FMRFa analogs for agonist and antagonist activity by measuring their abilities to produce [35-S]-GTP-gamma-S stimulation or to inhibit FMRFa-induced [35S]-GTP-gamma-S binding in squid optic lobes.

View Article and Find Full Text PDF

Three neuropeptide analogues of FMRFamide (FMRFa) were covalently attached to a tethered derivative of methylene blue to form dye-neuropeptide conjugates. The comparative binding of the latter to FMRFa receptors was subsequently examined in both Helix aspersa (circumesophageal ganglia) and squid (optic lobe membrane). In Helix, the FMRFa analogue CFMRFamide (CFMRFa) inhibited the specific binding of the FMRFa ligand [125I]daYFnLRFa in a dose-dependent manner.

View Article and Find Full Text PDF