Publications by authors named "Payton P"

MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development.

View Article and Find Full Text PDF

Cotton ( spp.) is the most important renewable source of natural textile fiber and one of the most cultivated crops around the world. Plant-parasitic nematode infestations, such as the southern Root-Knot Nematode (RKN) , represent a threat to cotton production worldwide.

View Article and Find Full Text PDF

The characteristics of sorghum anthers at 18 classified developmental stages provide an important reference for future studies on sorghum reproductive biology and abiotic stress tolerance of sorghum pollen. Sorghum (Sorghum bicolor L. Moench) is the fifth-most important cereal crop in the world.

View Article and Find Full Text PDF

Conventional light and electron microscopy are the most widely used techniques for examining plant reproductive tissues; however, they are time-consuming or expensive. The anther is the male part of the plant reproductive system. Structural changes drive development, and any structural defect may lead to an increase in fertility or cause sterility; thus, quick detection of structural changes is crucial in reproductive biology.

View Article and Find Full Text PDF
Article Synopsis
  • Bone grafting from the calcaneus (heel bone) is effective in foot and ankle surgery due to its easy access and good blood supply.
  • This study used fresh-frozen cadaver limbs to analyze the volume of cancellous bone that can be harvested while identifying safe anatomical zones and risks to nearby nerves and blood vessels.
  • Findings showed that an average of 0.85 cc of bone could be obtained with a small incision, and no damage to nerves was detected, suggesting this method could enhance surgical outcomes.
View Article and Find Full Text PDF

Understanding drought stress responses and the identification of phenotypic traits associated with drought are key factors in breeding for sustainable cotton production in limited irrigation water of semi-arid environments. The objective of this study was to evaluate the responses of upland cotton lines to rainfed and irrigated conditions. We compared selected agronomic traits over time, final yield and fiber quality of cotton lines grown in irrigated and rainfed trials.

View Article and Find Full Text PDF

The male-sterile 9 (ms9) is a novel nuclear male-sterile mutant in sorghum. The Ms9 gene encodes a PHD-finger transcription factor critical for pollen development. The identification of the Ms9 gene provides a strategy to control male sterility in sorghum.

View Article and Find Full Text PDF

Abiotic stresses such as extreme temperatures, water-deficit and salinity negatively affect plant growth and development, and cause significant yield losses. It was previously shown that co-overexpression of the Arabidopsis vacuolar pyrophosphatase gene AVP1 and the rice SUMO E3 ligase gene OsSIZ1 in Arabidopsis significantly increased tolerance to multiple abiotic stresses and led to increased seed yield for plants grown under single or multiple abiotic stress conditions. It was hypothesized that there might be synergistic effects between AVP1 overexpression and OsSIZ1 overexpression, which could lead to substantially increased yields if these two genes are co-overexpressed in real crops.

View Article and Find Full Text PDF

The severity and frequency of many abiotic stresses such as drought, salinity and heat, cause substantial crop losses worldwide, which poses a serious challenge in food security. To increase crop production, new approaches are needed. Previous research has shown that overexpression of the tonoplast H pyrophosphatase gene AVP1 leads to improved drought and salt tolerance in transgenic plants.

View Article and Find Full Text PDF

Perfluoro alkyl acids (PFAAs) are known to bioconcentrate in plants grown in contaminated soils; the potential risk from consuming these plants is currently less understood. We determined that the current daily reference doses (RfDs) of the US Environmental Protection Agency (USEPA) could be met by consuming a single radish grown in soils with a perfluorooctanoic acid (PFOA) concentration of 9.7 ng/g or a perfluorooctane sulfonate (PFOS) concentration of 90.

View Article and Find Full Text PDF

Carbon nanotube (CNT) applications are increasing in consumer products, including agriculture devices, making them an important contaminant to study in the field of plant nanotoxicology. Several studies have observed the uptake and effects of CNTs in plants. However, in other studies differing results were observed on growth and physiology depending on the plant species and type of CNT.

View Article and Find Full Text PDF

Drought is one of the main constraints in peanut production in West Texas and eastern New Mexico regions due to the depletion of groundwater. A multi-seasonal phenotypic analysis of 10 peanut genotypes revealed C76-16 (C-76) and Valencia-C (Val-C) as the best and poor performers under deficit irrigation (DI) in West Texas, respectively. In order to decipher transcriptome changes under DI, RNA-seq was performed in C-76 and Val-C.

View Article and Find Full Text PDF

Although many studies have evaluated the fate of per- and polyfluoroalkyl acids (PFAAs) in aquatic environments, few have observed their fate in terrestrial environments. It has been proposed that ingestion could be a major PFAA exposure route for humans. We determined PFAA uptake in radish, carrot, and alfalfa under a maximum bioavailability scenario.

View Article and Find Full Text PDF

Abiotic stresses such as water deficit, salt, and heat are major environmental factors that negatively affect plant growth, development, and productivity. Previous studies showed that overexpression of the Arabidopsis vacuolar H-pyrophosphatase gene AVP1 increases salt and water deficit stress tolerance and overexpression of the rice SUMO E3 ligase gene OsSIZ1 improves heat and water deficit stress tolerance in transgenic plants. In this report, the effects of co-overexpression of AVP1 and OsSIZ1 in Arabidopsis on abiotic stress tolerance were studied.

View Article and Find Full Text PDF

Treating patients with kidney disease can be both a difficult and a complex process. Understanding how to care for patients who have kidney disease is essential for lowering perioperative as well as periprocedural morbidity and mortality. The primary aim in renal evaluation and care is to control and mitigate factors that may result in acute kidney injury (AKI) and/or cause further decline in renal function.

View Article and Find Full Text PDF

Surgical treatment of the elderly can be a very difficult and complex endeavor. Appropriate and thorough evaluation of this group of patients is essential to identify surgical candidates who may be at increased risk for developing age-related problems, such as cognitive impairment or postoperative delirium. Involvement of family members and ancillary caregivers is ideal.

View Article and Find Full Text PDF

QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits.

View Article and Find Full Text PDF

Drought is the No. 1 factor that limits agricultural production in the world, thus, making crops more drought tolerant is a major goal in agriculture. Many genes with functions in abiotic stress tolerance were identified, and overexpression of these genes confers increased drought tolerance in transgenic plants.

View Article and Find Full Text PDF

Changes in atmospheric [CO2], temperature and precipitation under projected climate change scenarios may have significant impacts on the physiology and yield of cotton. Understanding the implications of integrated environmental impacts on cotton is critical for developing cotton systems that are resilient to stresses induced by climate change. The objective of this study was to quantify the physiological and growth capacity of two cotton cultivars under current and future climate regimes.

View Article and Find Full Text PDF

The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton.

View Article and Find Full Text PDF

Alterations in climate factors such as rising CO2 concentration ([CO2]), warming and reduced precipitation may have significant impacts on plant physiology and growth. This research investigated the interactive effects of elevated [CO2], warming and soil water deficit on biomass production, leaf-level physiological responses and whole-plant water use efficiency (WUEP) in cotton (Gossypium hirsutum L.).

View Article and Find Full Text PDF

Plants have evolved complex molecular, cellular and physiological mechanisms to respond to environmental stressors. Because of the inherent complexity of this response, genetic manipulation to substantially improve water deficit tolerance, particularly in agricultural crops, has been largely unsuccessful, as the improvements are frequently accompanied by slower growth and delayed reproduction. Here, we ectopically express two abiotic stress-responsive bZIP AREB/ABF transcription factor orthologs, Arabidopsis ABF3 and Gossypium hirsutum ABF2D, in G.

View Article and Find Full Text PDF

The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton ( L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform.

View Article and Find Full Text PDF

Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d.

View Article and Find Full Text PDF

Cotton exhibits moderately high vegetative tolerance to water-deficit stress but lint production is restricted by the available rainfed and irrigation capacity. We have described the impact of water-deficit stress on the genetic and metabolic control of fiber quality and production. Here we examine the association of tentative consensus sequences (TCs) derived from various cotton tissues under irrigated and water-limited conditions with stress-responsive QTLs.

View Article and Find Full Text PDF