Publications by authors named "Payton King"

Article Synopsis
  • Selegiline (L-deprenyl) is primarily used to treat Parkinson's disease as a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at standard doses, but higher doses show potential antidepressant effects by possibly inhibiting MAO-A as well.
  • Zydis selegiline (Zelapar) is a fast-dissolving version that allows for better absorption, leading to increased plasma levels and fewer metabolite effects compared to regular selegiline; however, its selectivity for MAO-B may diminish at higher dosages.
  • A study found that a 10 mg daily dose of Zydis selegiline significantly inhibited MAO-A in healthy men, providing the first direct
View Article and Find Full Text PDF

Recent studies have revealed that several histone deacetylase (HDAC) inhibitors, which are used to study/treat brain diseases, show low blood-brain barrier (BBB) penetration. In addition to low HDAC potency and selectivity observed, poor brain penetrance may account for the high doses needed to achieve therapeutic efficacy. Here we report the development and evaluation of highly potent and blood-brain barrier permeable HDAC inhibitors for CNS applications based on an image-guided approach involving the parallel synthesis and radiolabeling of a series of compounds based on the benzamide HDAC inhibitor, MS-275 as a template.

View Article and Find Full Text PDF

Dopamine D3 receptor (D3R) antagonists may be effective medications for multiple substance use disorders (SUDs). However, no selective D3R antagonists are currently available for clinical testing. Buspirone, originally characterized as a 5-HT1A partial agonist and used as an anxiolytic, also binds to D3R and D4R with high affinity, with lower affinity to D2R, and interferes with cocaine reward.

View Article and Find Full Text PDF

The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profiles. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min.

View Article and Find Full Text PDF

Rationale: The preclinical characterization of a series of aryloxypyridine amides has identified JNJ-39220675 ((4-cyclobutyl-1,4-diazepan-1-yl)(6-(4-fluorophenoxy)pyridin-3-yl)methanone) as a high-affinity histamine H(3) receptor antagonist and a candidate for further drug development particularly in the treatment of alcohol-related behaviors.

Objective: This study measured brain histamine H(3) receptor blockade by JNJ-39220675 (1 mg/kg) in the female baboon.

Methods: Positron emission tomography imaging and [(11)C]GSK189254, a reversible high-affinity radiotracer with specificity for the histamine H(3) receptor, was used to measure histamine H(3) receptor availability at baseline and after i.

View Article and Find Full Text PDF

Aromatase catalyzes the last step in estrogen biosynthesis. Brain aromatase is involved in diverse neurophysiological and behavioral functions including sexual behavior, aggression, cognition, and neuroprotection. Using positron emission tomography (PET) with the radiolabeled aromatase inhibitor [N-methyl-(11)C]vorozole, we characterized the tracer distribution and kinetics in the living human brain.

View Article and Find Full Text PDF

Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition.

View Article and Find Full Text PDF

Introduction: We reinvestigated the synthesis of [N-methyl-(11)C]vorozole, a radiotracer for aromatase, and discovered the presence of an N-methyl isomer which was not removed in the original purification method. Herein we report the preparation and positron emission tomography (PET) studies of pure [N-methyl-(11)C]vorozole.

Methods: Norvorozole was alkylated with [(11)C]methyl iodide as previously described and also with unlabeled methyl iodide.

View Article and Find Full Text PDF

Context: Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise.

Objective: To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain.

View Article and Find Full Text PDF

Methamphetamine is one of the most addictive and neurotoxic drugs of abuse. It produces large elevations in extracellular dopamine in the striatum through vesicular release and inhibition of the dopamine transporter. In the U.

View Article and Find Full Text PDF

Unlabelled: The methamphetamine molecule has a chiral center and exists as 2 enantiomers, d-methamphetamine (the more active enantiomer) and l-methamphetamine (the less active enantiomer). d-Methamphetamine is associated with more intense stimulant effects and higher abuse liability. The objective of this study was to measure the pharmacokinetics of d-methamphetamine for comparison with both l-methamphetamine and (-)-cocaine in the baboon brain and peripheral organs and to assess the saturability and pharmacologic specificity of binding.

View Article and Find Full Text PDF

Unlabelled: Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM).

Methods: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po).

View Article and Find Full Text PDF

Introduction: (3E)-3-[(2,4-dimethoxyphenyl)methylene]-3,4,5,6-tetrahydro-2,3'-bipyridine (GTS-21), a partial alpha7 nicotinic acetylcholine receptor agonist drug, has recently been shown to improve cognition in schizophrenia and Alzheimer's disease. One of its two major demethylated metabolites, 4-OH-GTS-21, has been suggested to contribute to its therapeutic effects.

Methods: We labeled GTS-21 in two different positions with carbon-11 ([2-methoxy-(11)C]GTS-21 and [4-(11)C]GTS-21) along with two corresponding demethylated metabolites ([2-methoxy-(11)C]4-OH-GTS-21 and [4-methoxy-(11)C]2-OH-GTS-21) for pharmacokinetic studies in baboons and mice with positron emission tomography (PET).

View Article and Find Full Text PDF

Unlabelled: Smokers have reduced levels of brain monoamine oxidase A (MAO A) leading to speculation that MAO A inhibition by tobacco smoke may underlie some of the neurophysiologic effects of smoking. Because smoking exposes peripheral organs as well as the brain to MAO A-inhibitory compounds, we determined whether smokers would also have reduced MAO A in peripheral organs.

Methods: We measured MAO A in peripheral organs in a group of 9 smokers and compared it with a group of nonsmokers studied previously.

View Article and Find Full Text PDF

Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d- and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer.

View Article and Find Full Text PDF

Reboxetine is a specific norepinephrine transporter (NET) inhibitor and has been marketed in several countries as a racemic mixture of the (R,R) and (S,S) enantiomers for the treatment of depression. Its methyl analog (methylreboxetine, MRB) has been shown to be more potent than reboxetine itself. We developed a nine-step synthetic procedure to prepare the normethyl precursor, which was used to synthesize [11C]O-methylreboxetine ([11C]MRB).

View Article and Find Full Text PDF

One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs.

View Article and Find Full Text PDF

Unlabelled: An understanding of how drugs are transferred between mother and fetus during the gestational period is an important medical issue of relevance to both therapeutic drugs and drugs of abuse. Though there are several in vitro and in vivo methods to examine this issue, all have limitations. Furthermore, ethical and safety considerations generally preclude such studies in pregnant humans.

View Article and Find Full Text PDF

Monoamine oxidase (MAO) catalyzes the oxidative deamination of many biogenic and dietary amines. Though studies of MAO have focused mainly on its regulatory role in the brain, MAO in peripheral organs also represents a vast mechanism for detoxifying vasoactive compounds as well as for terminating the action of physiologically active amines, which can cross the blood brain barrier. Indeed, robust central and peripheral MAO activity is a major requirement in the safe use of many CNS drugs, particularly antidepressants, and thus an awareness of the MAO inhibitory potential of drugs is essential in therapeutics.

View Article and Find Full Text PDF