Publications by authors named "Payel Bhanja"

Unlabelled: Macrophages are the major source of WNT ligands. Macrophage-derived WNT is one of the most potent regenerative signals to mitigate intestinal injury. However, regulation of WNT expression in macrophages has not been studied.

View Article and Find Full Text PDF

Tissue radiosensitivity plays a critical role in the overall outcome of radiation therapy. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data have suggested a difference in male and female radiotherapy outcomes.

View Article and Find Full Text PDF

Radiosensitivity, the susceptibility of cells to ionizing radiation, plays a critical role in understanding the effects of radiation therapy and exposure on tissue health and regeneration. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data suggested a difference in male and female radiotherapy outcomes.

View Article and Find Full Text PDF

We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.

View Article and Find Full Text PDF

Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities.

View Article and Find Full Text PDF

Background: Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum.

View Article and Find Full Text PDF

The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity.

View Article and Find Full Text PDF

Purpose: The radiosensitivity of the normal intestinal epithelium is the major limiting factor for definitive radiotherapy against abdominal malignancies. Radiosensitizers, which can be used without augmenting radiation toxicity to normal tissue, are still an unmet need. Inhibition of proteosomal degradation is being developed as a major therapeutic strategy for anticancer therapy as cancer cells are more susceptible to proteasomal inhibition-induced cytotoxicity compared with normal cells.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is an established and well-studied cellular response to the stress and serves to relieve the stress and reinstate cellular homeostasis. It occurs in the endoplasmic reticulum (ER), responsible of properly folding and processing of secretory and transmembrane proteins. It is extremely sensitive to alteration in homeostasis caused by various internal or external stressors which leads to accumulation of misfolded or unfolded proteins in the ER lumen.

View Article and Find Full Text PDF

Background: Radiation-induced gastrointestinal syndrome (RIGS) results from the acute loss of intestinal stem cells (ISC), impaired epithelial regeneration, and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, sepsis, and mortality. The high radiosensitivity of the intestinal epithelium limits effective radiotherapy against abdominal malignancies and limits the survival of victims of nuclear accidents or terrorism. Currently, there is no approved therapy to mitigate radiation toxicity in the intestine.

View Article and Find Full Text PDF

WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma.

View Article and Find Full Text PDF

Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure.

View Article and Find Full Text PDF

The hypoxic tumor microenvironment generates oxidative Endoplasmic Reticulum (ER) stress, resulting in protein misfolding and unfolded protein response (UPR). UPR induces several molecular chaperones including heat-shock protein 90 (HSP90), which corrects protein misfolding and improves survival of cancer cells and resistance to tumoricidal therapy although prolonged activation of UPR induces cell death. The HSP90 inhibitor, 17AAG, has shown promise against various solid tumors, including prostate cancer (PC).

View Article and Find Full Text PDF

Purpose: Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9.

View Article and Find Full Text PDF

Background: Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.

View Article and Find Full Text PDF

Background: Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS.

Methods And Findings: Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.

View Article and Find Full Text PDF

HIV-1 detected among female sex workers in Calcutta, India was characterized in respect to env and nef genes. A total of 39 HIV-1 seropositive samples were used in the study. Phylogenetic analysis of the nucleotide sequences of respective regions showed that 22 out of 39 samples (56.

View Article and Find Full Text PDF

The majority of HIV-1 transmission in Manipur, one of the northeastern states of India, is through the sharing of needles and syringes among the injecting drug users (IDUs). A total of 28 HIV seropositive samples were used to determine the HIV-1 subtypes with respect to both gag and envelope genes. The specific regions within gag and envelope genes were amplified from PBMC DNA by nested PCR using appropriate primers.

View Article and Find Full Text PDF

Since the first report of HIV/AIDS in India in 1986, continuous serosurveillance has been undertaken in all Indian states. Recently, five cases of HIV-2 infection have been detected in Calcutta, situated in the eastern part of India. The full-length envelope gene (2.

View Article and Find Full Text PDF