Publications by authors named "Payam Zarin"

Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving β cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC).

View Article and Find Full Text PDF

Izumo1R is a pseudo-folate receptor with an essential role in mediating tight oocyte/spermatozoa contacts during fertilization. Intriguingly, it is also expressed in CD4 T lymphocytes, in particular Treg cells under the control of Foxp3. To understand Izumo1R function in Treg cells, we analyzed mice with Treg-specific deficiency (Iz1rTrKO).

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a lung disease that may progress to systemic organ involvement and in some cases, death. The identification of the earliest predictors of progressive lung disease would allow for therapeutic intervention in those cases. In an earlier clinical study, individuals with moderate COVID-19 were treated with either arbidol (ARB) or inhaled interferon (IFN)-α2b +/-ARB.

View Article and Find Full Text PDF

γδ T-cells perform a wide range of tissue- and disease-specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon-γ (IFNγ) and interleukin-17 (IL-17) producing γδ T-cells remain unknown. Here, we define the cues involved in the functional programming of γδ T-cells, by examining the roles of T-cell receptor (TCR), Notch, and cytokine-receptor signaling.

View Article and Find Full Text PDF

Unlike αβ-T lineage cells, where the role of ligand in intrathymic selection is well established, the role of ligand in the development of γδ-T cells remains controversial. Here we provide evidence for the role of a bona fide selecting ligand in shaping the γδ-T cell-receptor (TCR) repertoire. Reactivity of the γδ-TCR with the major histocompatibility complex (MHC) Class Ib ligands, H2-T10/22, is critically dependent upon the EGYEL motif in the complementarity determining region 3 (CDR3) of TCRδ.

View Article and Find Full Text PDF

IL-17-producing γδ T (γδT17) cells are critical components of the innate immune system. However, the gene networks that control their development are unclear. Here we show that HEB (HeLa E-box binding protein, encoded by Tcf12) is required for the generation of a newly defined subset of fetal-derived CD73 γδT17 cells.

View Article and Find Full Text PDF

Recreating the thymic microenvironment in vitro poses a great challenge to immunologists. Until recently, the only approach was to utilize the thymic tissue in its three-dimensional form and to transfer the hematopoietic progenitors into this tissue to generate de novo T cells. With the advent of OP9-DL cells (bone marrow-derived cells that are transduced to express Notch ligand, Delta-like), hematopoietic stem cells (HSC) could be induced to differentiate into T cells in culture for the first time outside of the thymic tissue on a monolayer.

View Article and Find Full Text PDF

γδ T-cells boast an impressive functional repertoire that can paint them as either champions or villains depending on the environmental and immunological cues. Understanding the function of the various effector γδ subsets necessitates tracing the developmental program of these subsets, including the point of lineage bifurcation from αβ T-cells. Here, we review the importance of signals from the T-cell receptor (TCR) in determining αβ versus γδ lineage fate, and further discuss how the molecular components of this pathway may influence the developmental programming of γδ T-cells functional subsets.

View Article and Find Full Text PDF

Developing thymocytes bifurcate from a bipotent precursor into αβ- or γδ-lineage T cells. Considering this common origin and the fact that the T-cell receptor (TCR) β-, γ-, and δ-chains simultaneously rearrange at the double negative (DN) stage of development, the possibility exists that a given DN cell can express and transmit signals through both the pre-TCR and γδ-TCR. Here, we tested this scenario by defining the differentiation outcomes and criteria for lineage choice when both TCR-β and γδ-TCR are simultaneously expressed in Rag2(-/-) DN cells via retroviral transduction.

View Article and Find Full Text PDF

Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID.

View Article and Find Full Text PDF