Dual activation of the TLR7 and TLR8 pathways leads to the production of type I interferon and proinflammatory cytokines, resulting in efficient antigen presentation by dendritic cells to promote T-cell priming and antitumor immunity. We developed a novel series of TLR7/8 dual agonists with varying ratios of TLR7 and TLR8 activity for use as payloads for an antibody-drug conjugate approach. The agonist-induced production of several cytokines in human whole blood confirmed their functional activity.
View Article and Find Full Text PDFNKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations.
View Article and Find Full Text PDFNatural Killer (NK) cell dysfunction is associated with poorer clinical outcome in cancer patients. What regulates NK cell dysfunction in tumor microenvironment is not well understood. Here, we demonstrate that the human tumor-derived NKG2D ligand soluble MIC (sMIC) reprograms NK cell to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential.
View Article and Find Full Text PDFBackground: Melanoma patients who have detectable serum soluble NKG2D ligands either at the baseline or post-treatment of PD1/PDL1 blockade exhibit poor overall survival. Among families of soluble human NKG2D ligands, the soluble human MHC I chain-related molecule (sMIC) was found to be elevated in melanoma patients and mostly associated with poor response to PD1/PDL1 blockade therapy.
Methods: In this study, we aim to investigate whether co-targeting tumor-released sMIC enhances the therapeutic outcome of PD1/PDL1 blockade therapy for melanoma.
Natural killer (NK) cells are critical immune components in controlling tumor growth and dissemination. Given their innate capacity to eliminate tumor cells without prior sensitization, NK-based therapies for cancer are actively pursued pre-clinically and clinically. However, recent data suggest that tumors could induce functional alterations in NK cells, polarizing them to tumor-promoting phenotypes.
View Article and Find Full Text PDFBackground: Insufficient co-stimulation accounts for a great deal of the suboptimal activation of cytotoxic CD8 T cells (CTLs) and presumably unsatisfactory clinical expectation of PD1/PD-L1 therapy. Tumor-derived soluble NKG2D ligands are associated with poor clinical response to PD1/PD-L1 blockade therapy in cancer patients. One of the mostly occurring tumor-derived soluble NKG2D ligands, the soluble MHC I chain related molecule (sMIC) can impair co-stimulation to CD8 T cells.
View Article and Find Full Text PDFNKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion.
View Article and Find Full Text PDFHeightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD-dependent activity of the histone deacetylase Sirt1.
View Article and Find Full Text PDFThe present work describes the anticancer activity of Ophiobolin A isolated from the endophytic fungus Bipolaris setariae. Ophiobolin A was isolated using preparative HPLC and its structure was confirmed by HRMS, (1)H NMR, (13)C NMR, COSY, DEPT, HSQC and HMBC. It inhibited solid and haematological cancer cell proliferation with IC50 of 0.
View Article and Find Full Text PDF