In this current research, we conceptualized a novel nanotechnology-enabled synthesis approach of targeting HIV-harboring tissues via second-generation (G2) polyamidoamine (PAMAM) mannosylated (MPG2) dendrimers for programmed delivery of anti-HIV drugs efavirenz (EFV) and ritonavir (RTV). Briefly, here mannose served purpose of ligand in this EFV and RTV-loaded PAMAM G2 dendrimers, synthesized by divergent techniques, denoted as MPG2ER. The developed nanocarriers were characterized by different analytical tools FTIR, NMR, zeta potential, particle size, and surface morphology.
View Article and Find Full Text PDFCompared to other nano polymers, dendrimers have novel three-dimensional, synthetic hyperbranched, nano-polymeric structures. These supramolecular dendritic structures have a high degree of significant surface and core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy, and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface.
View Article and Find Full Text PDF