Publications by authors named "Paxtyn M Fisher"

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism).

View Article and Find Full Text PDF

Sterol 14α-demethylases (CYP51s) are phylogenetically the most conserved cytochromes P450, and their three-step reaction is crucial for biosynthesis of sterols and serves as a leading target for clinical and agricultural antifungal agents. The structures of several (bacterial, protozoan, fungal, and human) CYP51 orthologs, in both the ligand-free and inhibitor-bound forms, have been determined and have revealed striking similarity at the secondary and tertiary structural levels, despite having low sequence identity. Moreover, in contrast to many of the substrate-promiscuous, drug-metabolizing P450s, CYP51 structures do not display substantial rearrangements in their backbones upon binding of various inhibitory ligands, essentially representing a snapshot of the ligand-free sterol 14α-demethylase.

View Article and Find Full Text PDF

The sterol metabolome of Acanthamoeba castellanii (Ac) yielded 25 sterols. Substrate screening of cloned AcCYP51 revealed obtusifoliol as the natural substrate which converts to ∆-sterol (<95%). The combination of [H-methyl]methionine incubation to intact cultures showing C-ergosterol incorporates 2-H atoms and C-7-dehydroporiferasterol incorporates 5 H-atoms, the natural distribution of sterols, CYP51 and previously published sterol methyltransferase (SMT) data indicate separate ∆- and ∆-olefin pathways to C- and C-sterol products from the protosterol cycloartenol.

View Article and Find Full Text PDF