Publications by authors named "Pawel Zassowski"

1,3,4-Thiadiazole, 2,2'-bi(1,3,4-thiadiazole), 2,2':5',2″-ter(1,3,4-thiadiazole), and 2,2':5',2″:5″,2‴-quater(1,3,4-thiadiazole) symmetrically disubstituted with 3-alkyl-(2,2'-bithiophen)-5-yl were synthesized by new procedures using readily available ethyl 3-alkyl-(2,2'-bithiophene)-5-carboxylate as a convenient substrate. These new compounds with a fixed number of donor rings and increasing number of acceptor rings showed very interesting, tunable redox properties. In particular, they exhibited electron affinities (EAs) ranging from -3.

View Article and Find Full Text PDF

A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system.

View Article and Find Full Text PDF

Two low molecular weight electroactive donor-acceptor-donor (DAD)-type molecules are reported, namely naphthalene bisimide (NBI) symmetrically core-functionalized with dithienopyrrole (NBI-(DTP) ) and an asymmetric core-functionalized naphthalene bisimide with dithienopyrrole (DTP) substituent on one side and 2-ethylhexylamine on the other side (NBI-DTP-NHEtHex). Both compounds are characterized by low optical bandgaps (1.52 and 1.

View Article and Find Full Text PDF

The formation of a poly(2,6-carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5-bis(9-octyl-9H-carbazol-2-yl)pyridine and 3,5-bis(9-octyl-9H-carbazol-3-yl)pyridine by electrochemical and UV-Vis-NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6-carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.

View Article and Find Full Text PDF