Seminal plasma is rich in proteins originating from various male reproductive organs. The phosphorylation of these proteins can significantly impact sperm motility, capacitation, and acrosome reaction. Phosphoproteomics identifies, catalogues, and characterizes phosphorylated proteins.
View Article and Find Full Text PDFThis review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect.
View Article and Find Full Text PDFEpididymal maturation can be defined as a scope of changes occurring during epididymal transit that prepare spermatozoa to undergo capacitation. One of the most common post-translational modifications involved in the sperm maturation process and their ability to fertilise an oocyte is the phosphorylation of sperm proteins. The aim of this study was to compare tyrosine, serine, and threonine phosphorylation patterns of sperm proteins isolated from three subsequent segments of the stallion epididymis, during and out of the breeding season.
View Article and Find Full Text PDFThe determination of sperm cryotolerance is an important step in the process of developing optimal techniques for the storage of boar semen. The objective of this study was to determine individual proteome variations in boar seminal plasma and spermatozoa and establish their influence on the cryotolerance of ejaculate. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of protein with estimated molecular weight of 90 kDa in sperm extracts from ejaculates of selected boars.
View Article and Find Full Text PDFThe antioxidant system in semen is composed of enzymes, low-molecular weight antioxidants and seminal plasma proteins. Loss of enzymatic activity of superoxide dismutase (SOD) during semen preservation may cause insufficient antioxidant defense of boar spermatozoa. The aim of this study was to isolate and characterize SOD molecular forms from spermatozoa and to describe changes in SOD activity in boar sperm during preservation at 16°C.
View Article and Find Full Text PDFAffinity chromatography on Chelating Sepharose Fast Flow Gel-Zn(2+) was used for fractionation of boar seminal plasma proteins. Approximately 30% of total boar seminal plasma proteins showed affinity for zinc ions (ZnBP fraction). Native electrophoresis (PAGE) of ZnBP revealed six protein fractions which separated into 27 bands under denaturing conditions (SDS/PAGE).
View Article and Find Full Text PDFBoar seminal vesicle protein tyrosine acid phosphatase (PTAP) and human prostatic acid phosphatase (PAP) show high affinity for protein phosphotyrosine residues. The physico-chemical and kinetic properties of the boar and human enzymes are different. The main objective of this study was to establish the nucleotide sequence of cDNA encoding boar PTAP and compare it with that of human PAP cDNA.
View Article and Find Full Text PDFThe use of biochemical markers for identification of biological properties of semen will help to develop new criteria that are accurate and objective in predicting and improving male fertility. Understanding and controlling the mechanisms involved in fertility is a key challenge, which is of fundamental importance in successful animal reproductive performance. Moreover, unraveling the unique molecular mechanism associated with sperm function might have considerable diagnostic value in the evaluation of male infertility.
View Article and Find Full Text PDFProteomics is critical to identify the properties and functions of proteins involved in the mechanism regulating the male reproductive tract function. This approach is important in male fertility assessment and clinical diagnosis of the physiological state of individual reproductive organs. Proteomics also provides a tool to understand the interactions of seminal plasma proteins with spermatozoa, which could provide a useful model for studying ligand-cell interaction occurring at the sperm cell surface.
View Article and Find Full Text PDF