Polyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index-stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates-foaming of the material. Despite the awareness of the issue underlined in research works, the contribution of additives into formulations is often omitted, adversely impacting foams' performance.
View Article and Find Full Text PDFPolyurethane (PU) foams are versatile materials with a broad application range. Their performance is driven by the stoichiometry of polymerization reaction, which has been investigated in several works. However, the analysis was often limited only to selected properties and compared samples differing in apparent density, significantly influencing their performance.
View Article and Find Full Text PDFMaterial innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated into a flexible foamed PU matrix as a cost-effective waste-based filler.
View Article and Find Full Text PDF