Publications by authors named "Pawel Schlichtholz"

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

A remarkable feature of interannual climate variability is a robust link of wintertime anomalies of surface air temperature (SAT) in northern Asia to pan-Atlantic SAT variations associated with the North Atlantic Oscillation (NAO). Here statistical analyses of data from the era of satellite observations (1979-2017) are used to show that about 80% of the variance of the winter (December-March) mean area-averaged SAT anomalies in northern Asia can be explained by the anomalous surface circulation associated with an NAO-like mode of sea level pressure variability over extratropical Eurasia. These SAT anomalies are related equally strongly to the "Lake Baikal" vortex representing variations of the upper-tropospheric circulation over northern Asia.

View Article and Find Full Text PDF

Accelerated shrinkage of the Arctic sea ice cover is the main reason for the recent Arctic amplification of global warming. There is growing evidence that the ocean is involved in this phenomenon, but to what extent remains unknown. Here, a unique dataset of hydrographic profiles is used to infer the regional pattern of recent subsurface ocean warming and construct a skillful predictor for surface climate variability in the Barents Sea region - a hotspot of the recent climate change.

View Article and Find Full Text PDF

Midlatitude storm tracks are preferred regions of intense activity of synoptic eddies shaping the day-to-day weather and several aspects of surface climate. Here statistical analyses of observationally-based atmospheric data and observed Arctic sea ice concentration (SIC) in the period 1979-2017 are used to identify linkages of a dominant mode of interannual variability in wintertime upper-tropospheric storm track activity over Eurasia (STA mode) to the concurrent surface climate anomalies and pre-winter Arctic SIC variations. This mode explains an exceptionally large fraction (about 70% of the variance) of the North Atlantic Oscillation (NAO) and of a dominant mode of Eurasian surface air temperature variations.

View Article and Find Full Text PDF