Publications by authors named "Pawel Rochowski"

This study aims to evaluate the adsorptive, adhesive, and wetting energetic properties of five commercially available cleansers in contact with model dental polymer (PMMA). It was assumed that the selected parameters allow for determining the optimal concentration and place of key component accumulation for antibacterial activity in the bulk liquid phase and prevention of oral plaque formation at the prosthetic material surface. The adsorptive (Gibbs' excesses , critical micellar concentration) and thermal (entropy and enthalpy) surface characteristics originated from surface tension and dependences.

View Article and Find Full Text PDF

The idea behind the research presented is based upon apparently contradictory experimental results obtained here by means of photoacoustics modalities for the same drug donor/acceptor membrane system, serving as a surrogate for a transdermal delivery system. The first modality allowed for the monitoring of the total amount of mass uptake (m(t)-type data), while the second technique allowed for the quantification of time-dependent concentration distribution within the acceptor membrane (c(x,t)-type data). Despite of a very good agreement between the mt data and the 1st-order uptake fitting model (standard Fickian diffusion with constant source boundary condition), the standard approach failed during the c(x,t) data analysis.

View Article and Find Full Text PDF

The study concerns the evaluation of the physicochemical and thermo-adsorptive surface properties of six commercially available mouthrinses, particularly surface tension, surface activity, partitioning coefficient, critical micellar concentration, Gibbs excesses at interfaces, surface entropy, and enthalpy. The aim was to quantify their effect on the adhesion and wettability of a model poly(methyl methacrylate) (PMMA) polymer. The adsorptive and thermal surface characteristics were derived from surface tension () vs.

View Article and Find Full Text PDF

The aim of this research was to determine temporal and spatial evolution of biofilm architecture formed at model solid substrata submersed in Baltic sea coastal waters in relation to organic matter transformation along a one-year period. Several materials (metals, glass, plastics) were deployed for a certain time, and the collected biofilm-covered samples were studied with a confocal microscopy technique using the advanced programs of image analysis. The geometric and structural biofilm characteristics: biovolume, coverage fraction, mean thickness, spatial heterogeneity, roughness, aggregation coefficient, etc.

View Article and Find Full Text PDF

We develop a lumped parameter model to describe and predict the mass release of (absorption from) an arbitrary shaped body of any dimension in a large environment. Through the one-to-one analogy between diffusion-dominated mass transfer systems and electrical circuits we provide exact solutions in terms of averaged concentrations and mass released. An estimate of the equivalent resistance and of the release time is also given, and shown to be inversely proportional to the diffusivity.

View Article and Find Full Text PDF

The aim of the work was to quantify the surface wettability of metallic (Fe, Al, Cu, brass) surfaces covered with sprayed paints. Wettability was determined using the contact angle hysteresis approach, where dynamic contact angles (advancing ΘA and receding ΘR) were identified with the inclined plate method. The equilibrium, ΘY, contact angle hysteresis, CAH = ΘA − ΘR, film pressure, Π, surface free energy, γSV, works of adhesion, WA, and spreading, WS, were considered.

View Article and Find Full Text PDF

The aim of the study was to quantify the adsorptive and thermo-elastic properties of snowmelt water surface films and their spatial-temporal evolution with snowpack structure characteristics and the entrapped surface-active organic composition. Surface pressure-area (π-A) isotherms, surface pressure-temperature (π-T) isochors, and stress-relaxation (π-t) measurements were performed using a Langmuir trough system on snowmelt water samples collected in a large-scale field studies performed at several industrialized and rural Tricity (Gdansk, Poland) areas at various environmental conditions and subsequent stages of the snowpack melting progress. Since the snow-melted water composition and concentrations of surface active organic matter fractions therein are largely undetermined, the force-area isotherm scaling formalisms (2D virial equation and 2D film scaling theory of polymeric films) were adapted to the complex mixture of surfactants.

View Article and Find Full Text PDF

A model of spin-lattice relaxation for spin-1/2 nuclei in the presence of a residual dipole-dipole coupling has been presented. For slow dynamics the model predicts a bi-exponential relaxation at low frequencies, when the residual dipole-dipole interaction dominates the Zeeman coupling. Moreover, according to the model a frequency-specific relaxation enhancement, referred to as Dipolar Relaxation Enhancement (DRE) in analogy to the Quadrupole Relaxation Enhancement (QRE) is expected.

View Article and Find Full Text PDF

H Nuclear magnetic resonance (NMR) relaxometry was exploited to investigate the dynamics of solid proteins. The relaxation experiments were performed at 37 °C over a broad frequency range, from approximately 10 kHz to 40 MHz. Two relaxation contributions to the overall H spin-lattice relaxation were revealed; they were associated with H-H and H-N magnetic dipole-dipole interactions, respectively.

View Article and Find Full Text PDF

H spin-lattice nuclear magnetic resonance relaxation experiments were performed for five kinds of dermal fillers based on hyaluronic acid. The relaxation data were collected over a broad frequency range between 4 kHz and 40 MHz, at body temperature. Thanks to the frequency range encompassing four orders of magnitude, the dynamics of water confined in the polymeric matrix was revealed.

View Article and Find Full Text PDF

The objective of the present study is to better characterize the system acting as a model for the penetration of a pharmaceutical drug into the skin. With a new mathematical formalism, the transport of the drug (dithranol) from a semisolid vaseline suspension into an artificial membrane was described. In our novel approach, we have taken into account not only diffusion but also other effects dependent on chemical reactivity of drug, medium structure, and drug-matrix interactions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1ua4fq45e1jclemn2b6vdbr8fmlmvktd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once