Publications by authors named "Pawel Plocharz"

The aim of this work was to find a relationship between electroosmotic flow (EOF) velocity of the mobile phase in pressurized planar electrochromatography (PPEC) and physicochemical properties like zeta potential, dielectric constant, and viscosity of the mobile phase as well as its composition. The study included different types of organic modifiers (acetonitrile, methanol, ethanol, acetone, formamide, -methylformamide and ,-dimethylformamide) in the full concentration range. In all experiments, chromatographic glass plates HPTLC RP-18 W from Merck (Darmstadt) were used as a stationary phase.

View Article and Find Full Text PDF

We report combination of overpressured layer chromatography (OPLC) and pressurized planar electrochromatography (PPEC) techniques into a single technique in which both OPLC and PPEC processes proceed simultaneously and orthogonally. The separation process with this new technique is performed in adsorbent layer of a chromatographic plate, which is equipped with special sealing margin on its whole periphery and closed under pressure in special chamber. We have named this separation technique as orthogonal pressurized planar electrochromatography (OPPEC).

View Article and Find Full Text PDF

Theoretical backgrounds, development, examples of separations, constructional details and principle of action of devices of pressurized planar electrochromatography (PPEC) are presented. Development of the mode is described in respect of operating variables (composition of the mobile phase, pressure exerted on adsorbent layer, mobile phase flow velocity, temperature of separating system, etc.) influencing separation efficiency (kinetic performance, repeatability, separation time).

View Article and Find Full Text PDF

Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck).

View Article and Find Full Text PDF

Developments in planar electrochromatography in open (PEC) and closed (PPEC) systems are reviewed. The discussion focuses on progress in chamber construction for planar electrochromatography, separating system performance, equilibration of the PPEC process, separation time and selectivity, and the general advantages, disadvantages and prospects of this separation mode.

View Article and Find Full Text PDF

Three modes of sample application on the chromatographic plate are applied at present investigations of pressurized planar electrochromatography (PPEC) systems taking into special attention their influence on performance of the separating system. These modes are as follows: application of the sample solution directly on the chromatographic plate with microsyringe, deposition of sample solution on scrap of adsorbent layer followed by location oft this scrap on the chromatographic plate, application of the sample solution with commercially available aerosol applicator. These modes were combined with prewetting procedures of the chromatographic plates which lead to an accomplishment of equilibration of the stationary phase-mobile phase system.

View Article and Find Full Text PDF

Pressurized planar electrochromatography (PPEC) is the mode which offers much higher separation efficiency in comparison to conventional planar chromatography, including both higher performance and much higher speed of separation. In this paper, we present a new device for performing PPEC in which the whole area of the chromatographic plate is pressurized. Both electrodes (anode and cathode) are washed with the mobile phase during the experiment, which prevents gas bubbles from collection in the region of the electrodes.

View Article and Find Full Text PDF