Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL).
View Article and Find Full Text PDFGenetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.
View Article and Find Full Text PDFStudies of the morphology and the 45S nuc rDNA phylogeny of three potentially undescribed arbuscular mycorrhizal fungi (phylum Glomeromycota) grown in cultures showed that one of these fungi is a new species of the genus in the family Diversisporaceae; the other two fungi are new species in Scutellosporaceae. sp. nov.
View Article and Find Full Text PDFAs a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus , four potential new glomoid spore-producing species and , a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of , provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs.
View Article and Find Full Text PDFPowdery mildew (PM), a common cereal disease in cultivated areas, including Europe and other temperate regions, is caused by the fungus Blumeria graminis. While PM is one of the most important wheat leaf diseases globally, rye is highly tolerant to PM. It has been reported that in barley infected with PM, polyamine oxidase (PAO) activity related to the production of hydrogen peroxide (HO) has increased, which may promote defense against biotrophic or hemibiotrophic pathogens.
View Article and Find Full Text PDFDue to its value and economic importance, the genome of L. has been widely studied in various fields of science. In this study the genetic structure and relationships between 24 accessions of of different origins were assessed.
View Article and Find Full Text PDFThree new species of arbuscular mycorrhizal fungi of the genus (phylum Glomeromycota) were described based on their morphology and molecular phylogeny. The phylogeny was inferred from the analyses of the partial 45S rDNA sequences (18S-ITS-28S) and the largest subunit of RNA polymerase II () gene. These species were associated in the field with plants colonizing maritime sand dunes of the Baltic Sea in Poland and formed mycorrhiza in single-species cultures.
View Article and Find Full Text PDFExamination of fungal specimens collected in the Atlantic rain forest ecosystems of Northeast Brazil revealed many potentially new epigeous and semihypogeous glomerocarp-producing species of the phylum Glomeromycota. Among them were two fungi that formed unorganized epigeous glomerocarps with glomoid spores of almost identical morphology. The sole structure that distinguished the two fungi was the laminate layer 2 of their three-layered spore wall, which in spores of the second fungus crushed in PVLG-based mountants contracted and, consequently, transferred into a crown-like structure.
View Article and Find Full Text PDFBackground: Transcription factor (TF) GAMYB, belonging to MYB family (named after the gene of the avian myeloblastosis virus) is a master gibberellin (GA)-induced regulatory protein that is crucial for development and germination of cereal grain and involved in anther formation. It activates many genes including high-molecular-weight glutenin and α-amylase gene families. This study presents the first attempt to characterize the rye gene encoding GAMYB in relation to its sequence, polymorphisms, and phenotypic effects.
View Article and Find Full Text PDFHere, QTL mapping for thousand-kernel weight carried out within a 541 × Ot1-3 population of recombinant inbred lines using high-density DArT-based map and three methods (single-marker analysis with F parametric test, marker analysis with the Kruskal-Wallis K* nonparametric test, and the recently developed analysis named genes interaction assorting by divergent selection with χ test) revealed 28 QTL distributed over all seven rye chromosomes. The first two methods showed a high level of consistency in QTL detection. Each of 13 QTL revealed in the course of gene interaction assorting by divergent selection analysis coincided with those detected by the two other methods, confirming the reliability of the new approach to QTL mapping.
View Article and Find Full Text PDFThe introduction of high-yielding semi-dwarf varieties of wheat into cultivation has led to a "green revolution." This has required intensive research into various sources of dwarfism in wheat. However, there has been very little advancement in research on dwarfing genes in rye in comparison to wheat or barley.
View Article and Find Full Text PDFShortening rye stems to improve lodging resistance is among the major tasks awaiting breeders of this cereal. The most straightforward way to achieve this goal is the implementation of a dominant dwarfing gene into high yielding cultivars. The choice of dominant dwarfing genes in rye is limited to Ddw1 and Ddw3 loci, which are well characterized with respect to map position and tightly linked molecular markers on the long arms of chromosomes 5RL and 1RL, respectively.
View Article and Find Full Text PDFIdentification of bacterial artificial chromosome (BAC) clones containing specific sequences is a prerequisite for many applications, such as physical map anchoring or gene cloning. Existing BAC library screening strategies are either low-throughput or require a considerable initial input of resources for platform establishment. We describe a high-throughput, reliable, and cost-effective BAC library screening approach deploying genotyping platforms which are independent from the availability of sequence information: a genotyping-by-sequencing (GBS) method DArTSeq and the microarray-based Diversity Arrays Technology (DArT).
View Article and Find Full Text PDFMapping population of recombinant inbred lines (RILs) representing 541 × Ot1-3 cross exhibited wide variations of benzoxazinoid (BX) content in leaves and roots, brown rust resistance, α-amylase activity in the grain, and resistance to preharvest sprouting. QTL mapping of major BX species using a DArT-based map revealed a complex genetic architecture underlying the production of these main secondary metabolites engaged in stress and allelopathy responses. The synthesis of BX in leaves and roots was found to be regulated by different QTL.
View Article and Find Full Text PDFPlant Mol Biol Report
April 2017
Rye is a crop with relatively high resistance to biotic and abiotic stresses. However, the resistance to brown rust ( f. sp.
View Article and Find Full Text PDFGenotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.
View Article and Find Full Text PDFBackground: Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance.
View Article and Find Full Text PDFThe Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene.
View Article and Find Full Text PDFBi-directional selective genotyping (BSG) carried out on two opposite groups of F(9)(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS).
View Article and Find Full Text PDFFour F(2) mapping populations derived from crosses between rye inbred lines DS2 x RXL10, 541 x Ot1-3, S120 x S76 and 544 x Ot0-20 were used to develop a consensus map of chromosome 6R. Thirteen marker loci that were polymorphic in more than one mapping population constituted the basis for the alignment of the four maps using the JoinMap v. 3.
View Article and Find Full Text PDFGrain quality of rye is often negatively affected by sprouting - a complex trait with a poorly understood genetic background and strong interaction with weather conditions. The aim of this report was to detect the main quantitative trait loci (QTLs) underlying preharvest sprouting resistance in rye, measured as a percentage of sprouted kernels after spraying spikes with water for 7 days. Simple and composite interval mapping, carried out in 3 environments on 94 F3 and F4 families of the cross between sprouting-susceptible (541) and sprouting-resistant (Ot1-3) inbred lines, revealed 5 QTLs located on chromosome arms 1RL, 2RL, 5RL, 6RL and 7RL.
View Article and Find Full Text PDFA new genetic map of rye, developed by using the 541 x Ot1-3 F2 intercross, consists of 148 marker loci, including 99 RAPDs, 18 SSRs, 14 STSs, 9 SCARs and 7 ISSRs, and spans the distance of 1401.4 cM. To the 7 rye chromosomes, 8 linkage groups were assigned and compared with the reference map of the DS2 x RXL10 F2 intercross by using 24 common markers.
View Article and Find Full Text PDFGenetic control of alpha-amylase activity in rye grain was investigated by QTL mapping based on DS2 x RXL10 intercross consisting of 99 F5-6 families propagated at one location during four vegetation seasons. A wide range of variation in alpha-amylase activity and transgression effects were found among families and parental lines. This variation was shown to be determined in 40.
View Article and Find Full Text PDFGenetic maps containing molecular markers are useful tools for the identification of genes underlying quantitative traits (QTLs). Three traits important for plant physiology, i.e.
View Article and Find Full Text PDF