Publications by authors named "Pawel Mazierski"

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk.

View Article and Find Full Text PDF

Water pollution has become a critical global concern requiring effective monitoring techniques and robust protection strategies. Contaminants of emerging concern (CECs) are increasingly detected in various water sources, with their harmful effects on humans and ecosystems continually evolving. Based on literature reports highlighting the promising sorption properties of metal-organic frameworks (MOFs), the aim of this study was to evaluate the suitability of NH-MIL-125 (Ti) and UiO-66 (Ce) as sorbents in passive sampling devices (MOFs-PSDs) for the collection and extraction of a wide group of CECs.

View Article and Find Full Text PDF

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO/AgO/Au, TiO/AgO/PtO, TiO/CuO/Au, and TiO/CuO/PtO obtained via one-step anodic oxidation of the titanium-based alloys (TiAgAu, TiCuPt, TiCuAu, and TiAgPt) possessing high visible light activity in the inactivation process of methicillin-susceptible and other pathogenic bacteria-, sp., and .

View Article and Find Full Text PDF

Pharmaceutical and personal care products (PPCPs) have been consumed in great extension and most of these are found in water bodies, owing to the inefficiency of conventional wastewater treatments. To face against these recalcitrant contaminants, advanced oxidation processes such as photocatalysis and ozonation have been studied. Moreover, the combination of these technologies can improve the degradation of PPCPs, reducing the ozone consumption and the effluent toxicity with the presence of photocatalysts.

View Article and Find Full Text PDF

Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs.

View Article and Find Full Text PDF

In recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO.

View Article and Find Full Text PDF

One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO nanotubes by PbS quantum dots (QD).

View Article and Find Full Text PDF

Taking our current environmental situation in the world into consideration, people should face growing problems of air and water pollution. Heterogeneous photocatalysis is a highly promising tool to improve both air and water quality through decomposition/mineralization of contaminants directly into harmless CO and HO under ambient conditions. In this contribution, we focused on the synthesis of self-assembly WO thin films via an electrochemical approach in the aqueous electrolyte containing fluoride ions toward air purification.

View Article and Find Full Text PDF

Titanium dioxide can present advantages when coupled with ozonation. Moreover, the catalytic ozonation can be enhanced by radiation. The main disadvantage of this technology is the use of a suspended catalyst entailing a separation step.

View Article and Find Full Text PDF

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (TaO) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting TaO nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (BiS) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method.

View Article and Find Full Text PDF

Self-organized TiO nanotubes as immobilized photocatalysts were evaluated in detail for the photocatalytic degradation of parabens mixtures from ultrapure water. This kind of approach can be a very suitable option for emerging contaminants degradation considering the possibility of the catalyst reuse and recovery which will be simpler than when catalytic powders are used. The anodization method was applied for the TiO nanotubes production under different preparation voltages (20, 30 and 40 V).

View Article and Find Full Text PDF

Due to their photon up-converting capability, lanthanide ions are ideal candidates dopants for semiconductors for developing visible light-driven photocatalytic activity. Of particular relevance, the low luminescence efficiency of Ln-based nanoparticles is one of the main factors that limits their further applications. Carbon, which is present on the surface of all TiO photocatalysts, can be responsible for luminescence quenching processes and, thus, decreasing the photocatalytic activity of TiO.

View Article and Find Full Text PDF

The efficient and safe degradation of drugs present in wastewater requires the design of a new material possessing high activity for that process. In addition to other methods, photoelectrocatalysis (PEC) merges the strengths of both photocatalytic and electrochemical methods, and the efficiency could be enhanced by the type of photoelectrode material. To address this challenge, three Ti/TiO nanotube-based photoelectrodes, differing in their tube morphology, were prepared by anodic oxidation and employed for the degradation of the 5-fluorouracil (5-FU) drug by the PEC process.

View Article and Find Full Text PDF

Novel visible light responsive materials for water splitting are essential for the efficient conversion of solar energy into hydrogen bond energy. Among other semiconductors, gadolinium orthovanadate has appropriate conduction and valence band edges positioned to split water molecules and a narrow band gap that allows the use of visible light for hydrogen generation. Thus, we present here that hydrogen evolution under visible light (λ > 420 nm) could be accomplished using hierarchical 3D GdVO particles, obtained by a simple, one pot hydrothermal synthesis.

View Article and Find Full Text PDF

Nd-modified TiO photocatalysts have been obtained via hydrothermal (HT) and sol-hydrothermal (SHT) methods. The as-prepared samples were characterized by X-ray diffraction (XRD), BET surface area measurements, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), luminescence spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the synthesized samples was evaluated by the degradation of phenol in aqueous solution under irradiation with UV-vis (λ > 350 nm) and vis (λ > 420 nm) light, as well as by the degradation of gaseous toluene under irradiation with vis (λ = 415 nm) light.

View Article and Find Full Text PDF

V₂O₅-TiO₂ mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials.

View Article and Find Full Text PDF

Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt.

View Article and Find Full Text PDF

TiO nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session84ohbu5bbmt4flgggruv5p92dvdc3b0h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once