Publications by authors named "Pawel Kazimierski"

To improve the in situ soil stabilization, different chemical additives are used (ion exchange compounds, additives based on HSO or vinyl polymers, and organic additives using lignosulfonates). One interesting alternative is the production of additives from various waste materials. The extensive testing of waste-based blends with soil was performed; the mechanical (unconfined compressive strength (UCS)) and hydraulic (capillary rise, water absorption, and frost resistance (FR)) soil properties were measured.

View Article and Find Full Text PDF

The research proposed a novel method of obtaining sorption material from readily available Acorus calamus biomass through a combination of physical and chemical activation processes. The material with the highest specific surface area (1652 m g) was obtained by physical activation with CO, followed by chemical activation with KOH. Reversing the order of activation methods resulted in a lower specific surface area (1014 m g) of the carbon sample.

View Article and Find Full Text PDF

Biomass liquefaction is a well-known and extensively described process. Hydrothermal processes are well understood and can be used in the fuel industry. The use of organic solvents can result in full-fledged products for use in the synthesis of polyurethanes.

View Article and Find Full Text PDF

Waste biomass, a renewable energy source, is inexpensive material that has great potential in sorption and electrochemical application. The selected waste materials (corncobs, coconut shells, walnuts, and pistachio husks) allow to close the production cycle and enable material recycling, which are important aspects in the hierarchy of waste management. The proposed methodology for production and activation of biochars can be used industrially due to highly porous structure, developed surface area, and sorption ability of the obtained activated carbons (AC).

View Article and Find Full Text PDF

A fundamental issue of waste management and the rail transport industry is the problem of utilizing used railroad ties. Wooden railroad ties are treated with a preservative, usually creosote. Due to their high toxicity, railroad ties are considered hazardous waste and must be utilized under various directives.

View Article and Find Full Text PDF

Leather processing companies are struggling with the problem of increasing costs of post-production waste disposal. Therefore, the issue of thermal waste disposal at the plant and the use of generated heat in the production process is becoming more and more popular. Leather waste on its own does not allow for autothermal combustion despite the sufficient higher heating value (HHV).

View Article and Find Full Text PDF

The thermal pyrolysis of agriculture biomass has been studied in a fixed-bed reactor, where the pyrolysis was conducted at a steady temperature of 800 °C. This work analyses the pyrolysis products of six agricultural wastes: pistachio husks, walnut husks, sunflower hulls, buckwheat husks, corncobs and coconut shells. The conducted research compared examples of large waste biomass streams from different parts of the world as a potential source of renewable energy.

View Article and Find Full Text PDF

The routine pruning and cutting of fruit trees provides a considerable amount of biowaste each year. This lignocellulosic biomass, mainly in the form of branches, trunks, rootstocks, and leaves, is a potential high-quality fuel, yet often is treated as waste. The results of a feasibility study on biochar production by pyrolysis of residues from orchard pruning were presented.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates innovative rigid polyurethane foams made from Baltic Sea biomass, comparing them with traditional petrochemical polyurethane foams for performance evaluation.
  • The researchers used advanced imaging techniques like microcomputed tomography (microCT) and scanning electron microscopy (SEM) to analyze the microstructure in three dimensions.
  • Findings indicate that microCT is an effective method for assessing the microstructure of polyurethane foams, which is important for understanding their thermal insulation properties and overall density.
View Article and Find Full Text PDF

In this work, we present the preparation and characterization of biomass-derived activated carbon (AC) in view of its application as electrode material for electrochemical capacitors. Porous carbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtained biochar. We investigate here two activation methods, namely, physical by CO and chemical using KOH.

View Article and Find Full Text PDF

Tires, conveyor belts, floor mats, and shoe soles form a main-stream of rubber waste. The amount of these used materials continuously increases due to development of the rubber market. Therefore, pro-ecological utilization (i.

View Article and Find Full Text PDF

The aim of this study was to assess the possibility of using furniture waste for smokeless fuel production using the pyrolysis process. Four types of wood-based wastes were used in the pyrolysis process: pine sawdust (PS), chipboard (CB), medium-density fiberboard (MDF), and oriented strand board (OSB). Additionally, the slow and fast types of pyrolysis were compared, where the heating rates were 15 °C/min and 100 °C/min, respectively.

View Article and Find Full Text PDF

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products.

View Article and Find Full Text PDF

This review deals with the technologies of limonene production from waste tyre pyrolysis. Thermal decomposition is attractive for tackling the waste tyre disposal problem, as it enables both: energy to be recovered and limonene to be obtained. This material management recycling of tyres is environmentally more beneficial than the burning of all valuable products, including limonene.

View Article and Find Full Text PDF

This article covers new application for char as a carrier of phase-change materials (PCM) that could be used as an additive to building materials. Being composed of bio-char and PCM, the granulate successfully competes with more expensive commercial materials of this type, such as Micronal PCM. As a PCM carrier, char that was obtained from the pyrolysis of chestnut fruit (Aesculus hippocastanum) with different absorbances of the model phase-change material, Rubitherm RT22, was tested.

View Article and Find Full Text PDF