Materials (Basel)
November 2021
The aspect of safety in electronic devices has turned out to be a huge challenge for the world of science. Thus far, satisfactory power and energy densities, efficiency, and cell capacities have been achieved. Unfortunately, the explosiveness and thermal runaway of the cells prevents them from being used in demanding applications such as electric cars at higher temperatures.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2021
Over the past decades, the application of new hybrid materials in energy storage systems has seen significant development. The efforts have been made to improve electrochemical performance, cyclic stability, and cell life. To achieve this, attempts have been made to modify existing electrode materials.
View Article and Find Full Text PDFThis work determines the effect of the addition of various amounts of vanadium oxide on the work of a cell built from a hybrid VO-TiO-rGO system in a lithium-ion cell. Moreover, a new method based on solvothermal chemistry is proposed for the creation of a new type of composite material combining reduced graphene, vanadium oxide and crystalline anatase. The satisfactory electrochemical properties of VxOy-TiO-rGO hybrids can be attributed to the perfect matching of the morphology and structure of VxOy-TiO and rGO.
View Article and Find Full Text PDFThe main aim of this study is to estimate the kinetic and thermodynamic parameters of thermal decomposition of starches by the Coats-Redfern method. This procedure is a commonly used thermogravimetric analysis/difference thermal gravimetry/differental thermal analysis (TG/DTG-DTA) kinetic method for single rate form. The study also shows a proposed method for reactive hydroxyl groups content on the starch surface determination, and values were in range of 960.
View Article and Find Full Text PDF