Publications by authors named "Pawan Panwar"

Machine learning-based predictive models allow rapid and reliable prediction of material properties and facilitate innovative materials design. Base oils used in the formulation of lubricant products are complex hydrocarbons of varying sizes and structure. This study developed Gaussian process regression-based models to accurately predict the temperature-dependent density and dynamic viscosity of 305 complex hydrocarbons.

View Article and Find Full Text PDF

Molecular descriptors characterize the biological, physical, and chemical properties of molecules and have long been used for understanding molecular interactions and facilitating materials design. Some of the most robust descriptors are derived from geometrical representations of molecules, called 3-dimensional (3D) descriptors. When calculated from molecular dynamics (MD) simulation trajectories, 3D descriptors can also capture the effects of operating conditions such as temperature or pressure.

View Article and Find Full Text PDF