Publications by authors named "Pawan Pandoh"

The advent of long-read (LR) sequencing technologies has provided a direct opportunity to determine the structure of transcripts with potential for end-to-end sequencing of full-length RNAs. LR methods that have been described to date include commercial offerings from Oxford Nanopore Technologies (ONT) and Pacific Biosciences. These kits are based on selection of polyadenylated (polyA+) RNAs and/or oligo-dT priming of reverse transcription.

View Article and Find Full Text PDF
Article Synopsis
  • The Long-Read Personalized OncoGenomics (POG) dataset features 189 patient tumors and 41 matched normal samples, sequenced with Oxford Nanopore Technologies, providing a comprehensive resource for cancer research.
  • It highlights the advantages of long-read sequencing in identifying complex structural variants, viral integrations, and specific DNA behaviors, such as prominent methylation patterns associated with various cancers.
  • The findings underscore the potential of this dataset in precision medicine, serving as a tool for advancing analytical techniques in cancer genomics.
View Article and Find Full Text PDF

We demonstrate a method for tissue microdissection using scanning laser ablation that is approximately two orders of magnitude faster than conventional laser capture microdissection. Our novel approach uses scanning laser optics and a slide coating under the tissue that can be excited by the laser to selectively eject regions of tissue for further processing. Tissue was dissected at 0.

View Article and Find Full Text PDF

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented.

View Article and Find Full Text PDF

We present a genome assembly of (the Loggerhead sea turtle; Chordata, Testudines, Cheloniidae), generated from genomic data from two unrelated females. The genome sequence is 2.13 gigabases in size.

View Article and Find Full Text PDF
Article Synopsis
  • Imprinting is essential for embryonic development in mammals and is regulated by specific differentially methylated regions (DMRs) tied to parental origin.
  • The study utilized nanopore sequencing data from B-lymphocyte cell lines to map imprinted intervals in the human genome, successfully phasing 95% of the human methylome and identifying 94% of well-known DMRs.
  • Additionally, researchers discovered 42 novel imprinted DMRs and noted subtle parental methylation bias, suggesting that nanopore sequencing can simplify the process of identifying imprinting regions compared to traditional multi-generational methods.
View Article and Find Full Text PDF

Background: To support the implementation of high-throughput pipelines suitable for SARS-CoV-2 sequencing and analysis in a clinical laboratory, we developed an automated sample preparation and analysis workflow.

Methods: We used the established ARTIC protocol with approximately 400 bp amplicons sequenced on Oxford Nanopore's MinION. Sequences were analyzed using Nextclade, assigning both a clade and quality score to each sample.

View Article and Find Full Text PDF

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.

View Article and Find Full Text PDF

The ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing.

View Article and Find Full Text PDF

The practical application of genome-scale technologies to precision oncology research requires flexible tissue processing strategies that can be used to differentially select both tumour and normal cell populations from formalin-fixed, paraffin-embedded tissues. As tumour sequencing scales towards clinical implementation, practical difficulties in scheduling and obtaining fresh tissue biopsies at scale, including blood samples as surrogates for matched 'normal' DNA, have focused attention on the use of formalin-preserved clinical samples collected routinely for diagnostic purposes. In practice, such samples often contain both tumour and normal cells which, if correctly partitioned, could be used to profile both tumour and normal genomes, thus identifying somatic alterations.

View Article and Find Full Text PDF

Here, we present the chloroplast genome sequence of black spruce (), a conifer widely distributed throughout North American boreal forests. This complete and annotated chloroplast sequence is 123,961 bp long and will contribute to future studies on the genetic basis of evolutionary change in spruce and adaptation in conifers.

View Article and Find Full Text PDF

Purpose: Structural variants (SVs) may be an underestimated cause of hereditary cancer syndromes given the current limitations of short-read next-generation sequencing. Here we investigated the utility of long-read sequencing in resolving germline SVs in cancer susceptibility genes detected through short-read genome sequencing.

Methods: Known or suspected deleterious germline SVs were identified using Illumina genome sequencing across a cohort of 669 advanced cancer patients with paired tumor genome and transcriptome sequencing.

View Article and Find Full Text PDF

Plant mitochondrial genomes vary widely in size. Although many plant mitochondrial genomes have been sequenced and assembled, the vast majority are of angiosperms, and few are of gymnosperms. Most plant mitochondrial genomes are smaller than a megabase, with a few notable exceptions.

View Article and Find Full Text PDF

Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1-10 ng of intact total RNA and 100-500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues.

View Article and Find Full Text PDF

The Steller sea lion is the largest member of the Otariidae family and is found in the coastal waters of the northern Pacific Rim. Here, we present the Steller sea lion genome, determined through DNA sequencing approaches that utilized microfluidic partitioning library construction, as well as nanopore technologies. These methods constructed a highly contiguous assembly with a scaffold N50 length of over 14 megabases, a contig N50 length of over 242 kilobases and a total length of 2.

View Article and Find Full Text PDF

Engelmann spruce () is a conifer found primarily on the west coast of North America. Here, we present the complete chloroplast genome sequence of genotype Se404-851. This chloroplast sequence will benefit future conifer genomic research and contribute resources to further species conservation efforts.

View Article and Find Full Text PDF

Here, we present the complete chloroplast genome sequence of white spruce (, genotype WS77111), a coniferous tree widespread in the boreal forests of North America. This sequence contributes to genomic and phylogenetic analyses of the genus that are part of ongoing research to understand their adaptation to environmental stress.

View Article and Find Full Text PDF

The threespine stickleback is a geographically widespread and ecologically highly diverse fish that has emerged as a powerful model system for evolutionary genomics and developmental biology. Investigations in this species currently rely on a single high-quality reference genome, but would benefit from the availability of additional, independently sequenced and assembled genomes. We present here the assembly of four new stickleback genomes, based on the sequencing of microfluidic partitioned DNA libraries.

View Article and Find Full Text PDF

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB).

View Article and Find Full Text PDF

The grizzly bear ( ssp. ) represents the largest population of brown bears in North America. Its genome was sequenced using a microfluidic partitioning library construction technique, and these data were supplemented with sequencing from a nanopore-based long read platform.

View Article and Find Full Text PDF

Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome.

View Article and Find Full Text PDF

The beluga whale is a cetacean that inhabits arctic and subarctic regions, and is the only living member of the genus . The genome of the beluga whale was determined using DNA sequencing approaches that employed both microfluidic partitioning library and non-partitioned library construction. The former allowed for the construction of a highly contiguous assembly with a scaffold N50 length of over 19 Mbp and total reconstruction of 2.

View Article and Find Full Text PDF

The northern sea otter inhabits coastal waters of the northern Pacific Ocean and is the largest member of the Mustelidae family. DNA sequencing methods that utilize microfluidic partitioned and non-partitioned library construction were used to establish the sea otter genome. The final assembly provided 2.

View Article and Find Full Text PDF