Publications by authors named "Pawan L Kulwal"

Association mapping (AM), also known as genome-wide association studies (GWAS), is increasingly being employed in crop plants for the identification of QTL/genes and marker-trait associations (MTAs) in natural populations. Large numbers of such associations have been identified for variety of traits in different crop plants. However, not many of these associations have been used practically in the crop improvement program due to lack of validation.

View Article and Find Full Text PDF

We had the fortune of starting our scientific/research careers in the Molecular Biology and Crop Biotechnology Laboratory of Professor P.K. Gupta at Ch.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas are an important legume crop, but genetic diversity for breeding is limited, making the availability of diverse germplasm crucial for improving cultivars.
  • The study focuses on the use of SSR markers linked to drought tolerance traits to assess genetic variation among chickpea genotypes, particularly comparing them to the drought-tolerant genotype ICC-4958.
  • Results showed that while most genotypes had similar alleles to ICC-4958, only a few were different (polymorphic), indicating that additional markers may be needed for effective selection in breeding programs.
View Article and Find Full Text PDF

Quantitative trait loci mapping has become a common practice in crop plants and can be accomplished using either biparental populations following interval mapping or natural populations following the approach of association mapping. Because of its ability to use the natural diversity and to search for functional variants in a broader germplasm, association mapping is becoming popular among researchers. An overview of the different steps involved in association mapping in plants is provided in this chapter.

View Article and Find Full Text PDF

The rice blast caused by the fungus is one of the most devastating diseases of rice and can lead to complete failure of the crop under severe cases. The first step in breeding for blast resistance in rice is therefore to identify the novel sources of resistance and cataloguing different blast resistant genes in these genotypes. In the present study, a set of 37 rice genotypes comprising of landraces, advanced breeding lines and released varieties were first characterized for blast resistance under epiphytotic conditions and subsequently different blast resistant genes were catalogued with the help of markers tightly linked to these genes.

View Article and Find Full Text PDF

With the availability of DNA-based molecular markers during early 1980s and that of sophisticated statistical tools in late 1980s and later, it became possible to identify genomic regions that control a quantitative trait. The two methods used for this purpose included quantitative trait loci (QTL) interval mapping and genome-wide association mapping/studies (GWAS). Both these methods have their own merits and demerits, so that newer approaches were developed in order to deal with the demerits.

View Article and Find Full Text PDF

Quantitative trait loci (QTL) mapping in crop plants has now become a common practice due to the advances made in the area of molecular markers as well as that of statistical genomics. Consequently, large numbers of QTLs have been identified in different crops for a variety of traits. Several computational tools are now available that suit the type of mapping population and the trait(s) to be studied for QTL analyses as well as the objective of the program.

View Article and Find Full Text PDF

The research area of association mapping (AM) is currently receiving major attention for genetic studies of quantitative traits in all major crops. However, the level of success and utility of AM achieved for crop improvement is not comparable to that in the area of human health care for diagnosis of complex human diseases. These AM studies in plants, as in humans, became possible due to the availability of DNA-based molecular markers and a variety of sophisticated statistical tools that are evolving on a regular basis.

View Article and Find Full Text PDF

Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C.

View Article and Find Full Text PDF

With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio.

View Article and Find Full Text PDF

Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL.

View Article and Find Full Text PDF

During the last two decades, DNA-based molecular markers have been extensively utilized for a variety of studies in both plant and animal systems. One of the major uses of these markers is the construction of genome-wide molecular maps and the genetic analysis of simple and complex traits. However, these studies are generally based on linkage analysis in mapping populations, thus placing serious limitations in using molecular markers for genetic analysis in a variety of plant systems.

View Article and Find Full Text PDF