We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
July 2014
Cyclic guanosine 3',5'-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs.
View Article and Find Full Text PDFBackground: Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs.
View Article and Find Full Text PDFWorld J Gastroenterol
February 2013
Aim: To investigate lipopolysaccharide (LPS) related signal transduction in interstitial cells of Cajal (ICCs) from mouse small intestine.
Methods: For this study, primary culture of ICCs was prepared from the small intestine of the mouse. LPS was treated to the cells prior to measurement of the membrane currents by using whole-cell patch clamp technique.
Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC.
View Article and Find Full Text PDFBackground And Purpose: Lipopolysaccharide (LPS) induces intestinal dysmotility by alteration of smooth muscle and enteric neuronal activities. However, there is no report on the modulatory effects of LPS on the interstitial cells of Cajal (ICCs). We investigated the effect of LPS and its signal transduction in ICCs.
View Article and Find Full Text PDFNeurotensin, a tridecapeptide localized in the gut to discrete enteroendocrine cells of the small bowel mucosa, is a hormone that plays an important role in gastrointestinal secretion, growth, and motility. Neurotensin has inhibitory and excitatory effects on peristaltic activity and produces contractile and relaxant responses in intestinal smooth muscle. Our objective in this study is to investigate the effects of neurotensin in small intestinal interstitial cells of Cajal (ICC) and elucidate the mechanism.
View Article and Find Full Text PDFWe studied whether nitric oxide (NO) and hydrogen sulfide (H(2)S) have an interaction on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of NO and H(2)S on pacemaker activities were investigated by using the whole-cell patch-clamp technique and intracellular Ca(2+) analysis at 30℃ in cultured mouse ICC. Exogenously applied (±)-S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, or sodium hydrogen sulfide (NaHS), a donor of H(2)S, showed no influence on pacemaker activity (potentials and currents) in ICC at low concentrations (10 µM SNAP and 100 µM NaHS), but SNAP or NaHS completely inhibited pacemaker amplitude and pacemaker frequency with increases in the resting currents in the outward direction at high concentrations (SNAP 100 µM and NaHS 1 mM).
View Article and Find Full Text PDFIn this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular Ca(2+) ([Ca(2+)](i)) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner.
View Article and Find Full Text PDFBackground/aims: Capsaicin (8-methyl-N-vanillyl-6-ninenamide), a compound found in hot peppers, has been reported to have different physiological actions on different cell types. Not much work has been done about the effect of capsaicin on the function of interstitial cells of Cajal (ICC). In the present study, we examined the action of external application of capsaicin on pacemaker activity in the cultured ICC from the small intestine of mouse.
View Article and Find Full Text PDFThe effects of (-)-epigallocatechin gallate (EGCG) on pacemaker activities of cultured interstitial cells of Cajal (ICC) from murine small intestine were investigated using whole-cell patch-clamp technique at 30 and Ca(2+) image analysis. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. The treatment of ICC with EGCG resulted in a dose-dependent decrease in the frequency and amplitude of pacemaker currents.
View Article and Find Full Text PDF