Publications by authors named "Pawan K Baheti"

In remote monitoring of Electrocardiogram (ECG), it is very important to ensure that the diagnostic integrity of signals is not compromised by sensing artifacts and channel errors. It is also important for the sensors to be extremely power efficient to enable wearable form factors and long battery life. We present an application of Compressive Sensing (CS) as an error mitigation scheme at the application layer for wearable, wireless sensors in diagnostic grade remote monitoring of ECG.

View Article and Find Full Text PDF

In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies.

View Article and Find Full Text PDF

We present an adaptive feature-specific imaging (AFSI) system for application to an M-class recognition task. The proposed system uses nearest-neighbor-based density estimation to compute the (non-Gaussian) class-conditional densities. We refine the density estimates based on the training data and the knowledge from previous measurements at each step.

View Article and Find Full Text PDF

We present an information-theoretic adaptive feature-specific imaging (AFSI) system for a M-class recognition task. The proposed system utilizes the recently developed task-specific information (TSI) framework to incorporate the knowledge from previous measurements and adapt the projection matrix at each step. The decision-making framework is based on sequential hypothesis testing.

View Article and Find Full Text PDF

We present a task-specific information (TSI) based framework for designing compressive imaging (CI) systems. The task of target detection is chosen to demonstrate the performance of the optimized CI system designs relative to a conventional imager. In our optimization framework, we first select a projection basis and then find the associated optimal photon-allocation vector in the presence of a total photon-count constraint.

View Article and Find Full Text PDF

We present a feature-specific imaging system based on the use of structured illumination. The measurements are defined as inner products between the illumination patterns and the object reflectance function, measured on a single photodetector. The illumination patterns are defined using random binary patterns and thus do not employ prior knowledge about the object.

View Article and Find Full Text PDF

We present an adaptive feature-specific imaging (AFSI) system and consider its application to a face recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. Using sequential hypothesis testing, we compare AFSI with static-FSI (SFSI) and static or adaptive conventional imaging in terms of the number of measurements required to achieve a specified probability of misclassification (Pe).

View Article and Find Full Text PDF

Imagery is often used to accomplish some computational task. In such cases there are some aspects of the imagery that are relevant to the task and other aspects that are not. In order to quantify the task-specific quality of such imagery, we introduce the concept of task-specific information (TSI).

View Article and Find Full Text PDF

We present a feature-specific imaging system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all the reflected light onto a single photodetector. Principal component features are used to define the illumination patterns.

View Article and Find Full Text PDF