Publications by authors named "Pavone F"

Article Synopsis
  • The study demonstrates the use of Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) to measure intracellular cholesterol levels in human fibroblasts, critical for understanding cholesterol metabolism and diagnosing related disorders.
  • SERS proved to be more sensitive and accurate in detecting cholesterol levels in fibroblasts from patients with type C Niemann-Pick disease compared to RS and traditional fluorescent methods.
  • Researchers found that gold nanoparticles used in SERS were internalized by the cells and localized in lysosomes, enhancing the method's sensitivity and suggesting its potential for developing tools for screening and monitoring cholesterol-related diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Modern neuroscience aims to understand the complex connections among neuronal populations in the brain, a goal made feasible by recent technological advancements.
  • New optical methods and genetically engineered indicators allow researchers to study and manipulate the activity of large groups of neurons, particularly in translucent larval zebrafish.
  • The authors present a custom optical system that integrates advanced imaging and stimulation techniques, enabling them to noninvasively reconstruct neuronal connectivity in a specific brain region called the habenula.
View Article and Find Full Text PDF

Advanced 3D imaging techniques and image segmentation and classification methods can profoundly transform biomedical research by offering deep insights into the cytoarchitecture of the human brain in relation to pathological conditions. Here, we propose a comprehensive pipeline for performing 3D imaging and automated quantitative cellular phenotyping on Formalin-Fixed Paraffin-Embedded (FFPE) human brain specimens, a valuable yet underutilized resource. We exploited the versatility of our method by applying it to different human specimens from both adult and pediatric, normal and abnormal brain regions.

View Article and Find Full Text PDF

Although Surface Enhanced Raman Scattering (SERS) is widely applied for ultrasensitive diagnostics and imaging, its potential is largely limited by the difficult preparation of SERS tags, typically metallic nanoparticles (NPs) functionalized with Raman-active molecules (RRs), whose production often involves complex synthetic approaches, low colloidal stability and poor reproducibility. Here, we introduce LipoGold Tags, a simple platform where gold NPs (AuNPs) clusters form via self-assembly on lipid vesicle. RRs embedded in the lipid bilayer experience enhanced electromagnetic field, significantly increasing their Raman signals.

View Article and Find Full Text PDF

Significance: Histopathological examination of surgical biopsies, such as in glioma and glioblastoma resection, is hindered in current clinical practice by the long time required for the laboratory analysis and pathological screening, typically taking several days or even weeks to be completed.

Aim: We propose here a transportable, high-density, spectral scanning-based hyperspectral imaging (HSI) setup, named HyperProbe1, that can provide , fast biochemical analysis, and mapping of fresh surgical tissue samples, right after excision, and without the need for fixing, staining nor compromising the integrity of the tissue properties.

Approach: HyperProbe1 is based on spectral scanning via supercontinuum laser illumination filtered with acousto-optic tunable filters.

View Article and Find Full Text PDF

Cerebral edema (CE) and hemorrhagic transformation (HT) are frequent and unpredictable events in patients with acute ischemic stroke (AIS), even when an effective vessel recanalization has been achieved. These complications, related to blood-brain barrier (BBB) disruption, remain difficult to prevent or treat and may offset the beneficial effect of recanalization, and lead to poor outcomes. The aim of this translational study is to evaluate the association of circulating and imaging biomarkers with subsequent CE and HT in stroke patients with the dual purpose of investigating possible predictors as well as molecular dynamics underpinning those events and functional outcomes.

View Article and Find Full Text PDF

Although visible light-based stereolithography (SLA) represents an affordable technology for the rapid prototyping of 3D scaffolds for in vitro support of cells, its potential could be limited by the lack of functional photocurable biomaterials that can be SLA-structured at micrometric resolution. Even if innovative photocomposites showing biomimetic, bioactive, or biosensing properties have been engineered by loading inorganic particles into photopolymer matrices, main examples rely on UV-assisted extrusion-based low-resolution processes. Here, SLA-printable composites were obtained by mixing a polyethylene glycol diacrylate (PEGDA) hydrogel with multibranched gold nanoparticles (NPs).

View Article and Find Full Text PDF

3D reconstruction of human brain volumes at high resolution is now possible thanks to advancements in tissue clearing methods and fluorescence microscopy techniques. Analyzing the massive data produced with these approaches requires automatic methods able to perform fast and accurate cell counting and localization. Recent advances in deep learning have enabled the development of various tools for cell segmentation.

View Article and Find Full Text PDF

Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Large-scale cortical dynamics are essential for cognitive functions like motor learning and sensory processing, with different brain states (like wakefulness and anesthesia) influencing neuronal activity.
  • This study used Independent Component Analysis on wide-field imaging of mouse cortical activity to explore how various brain states affect cortical networks, identifying patterns common across subjects.
  • Findings showed that certain cortical regions, especially the retrosplenial cortices, were more active during deeper anesthesia, while awake states exhibited a more diverse range of cortical dynamics.
View Article and Find Full Text PDF

Sensory information must be integrated across a distributed brain network for stimulus processing and perception. Recent studies have revealed specific spatiotemporal patterns of cortical activation for the early and late components of sensory-evoked responses, which are associated with stimulus features and perception, respectively. Here, we investigated how the brain state influences the sensory-evoked activation across the mouse cortex.

View Article and Find Full Text PDF

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Despite advancements in clearing techniques, processing human brains postmortem is still challenging because of their size and complex structure.
  • This paper introduces the SHORT protocol, which allows for simultaneous processing of multiple brain sections for improved tissue clearing, labeling, and imaging.
  • By utilizing light-sheet fluorescence microscopy (LSFM) with the SHORT method, researchers can quickly reconstruct 3D images of brain architecture, helping to identify various neuronal subpopulations in a more efficient way.
View Article and Find Full Text PDF

Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches.

View Article and Find Full Text PDF

Scientific research on the impact of microplastics (MPs) in terrestrial systems is still emerging, but it has confirmed adverse health effects in organisms exposed to plastics. Although recent studies have shown the toxicological effects of individual MPs polymers on honey bees, the effects of different polymer combinations on cognitive and behavioural performance remain unknown. To fill this knowledge gap, we investigated the effects of oral exposure to spherical MPs on cognitive performance and brain accumulation in the honey bee Apis mellifera.

View Article and Find Full Text PDF

Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Leveraging recent advancements in ultra-high resolution MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere scans at 120 m, we propose a multi-resolution U-Nets framework (MUS) that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the differences in interoceptive (internal awareness) and exteroceptive (external awareness) perceptions between patients with psychosis (PSY) and healthy controls (HC), revealing that PSY have altered perceptions.
  • Findings showed PSY had increased scores in specific domains of interoception and exteroception, highlighting stronger coupling compared to HC, especially among those with schizophrenia/schizoaffective disorders.
  • The research identifies distinct correlation patterns between interoceptive and exteroceptive perceptions in HC and PSY, suggesting complex interactions that differ based on the type of psychosis.
View Article and Find Full Text PDF

Background: The majority of female cancer patients undergoing anticancer treatments are at risk of experiencing 'cancer treatment-related infertility', which can result in permanent damage to their reproductive prospects. Among the fertility preservation methods, ovarian tissue cryopreservation (OTC) has emerged as an alternative for these patients. The Cancer Institute of Bari initiated a research program to assess the feasibility of OTC.

View Article and Find Full Text PDF

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries.

View Article and Find Full Text PDF

Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurological condition characterized by cognitive decline, memory loss, and behavioral skill impairment, features that worsen with time. Early diagnosis will likely be the most effective therapy for Alzheimer's disease since it can ensure timely pharmacological treatments that can reduce the irreversible progression and delay the symptoms. Amyloid β-peptide 1-42 (Aβ (1-42)) is considered one of the key pathological AD biomarkers that is present in different biological fluids.

View Article and Find Full Text PDF

In HILO microscopy, a highly inclined and laminated light sheet is used to illuminate the sample, thus drastically reducing background fluorescence in wide-field microscopy, but maintaining the simplicity of the use of a single objective for both illumination and detection. Although the technique has become widely popular, particularly in single molecule and super-resolution microscopy, a limited understanding of how to finely shape the illumination beam and of how this impacts on the image quality complicates the setting of HILO to fit the experimental needs. In this work, we build up a simple and comprehensive guide to optimize the beam shape and alignment in HILO and to predict its performance in conventional fluorescence and super-resolution microscopy.

View Article and Find Full Text PDF

Systemic administration of Nogo-A-neutralizing antibody ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the blood-brain barrier (BBB) is a major obstacle limiting the passage of systemically applied antibody to the CNS. To bypass the BBB, in the present study we tested the intranasal route of administration by targeting the olfactory mucosa with the Nogo-A-blocking antibody 11C7 mAb in myelin oligodendrocyte glycoprotein-induced EAE.

View Article and Find Full Text PDF

Fear responses are functionally adaptive behaviors that are strengthened as memories. Indeed, detailed knowledge of the neural circuitry modulating fear memory could be the turning point for the comprehension of this emotion and its pathological states. A comprehensive understanding of the circuits mediating memory encoding, consolidation, and retrieval presents the fundamental technological challenge of analyzing activity in the entire brain with single-neuron resolution.

View Article and Find Full Text PDF

Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging.

View Article and Find Full Text PDF