Proton irradiation experiments have been used as a surrogate for studying radiation effects in numerous materials for decades. The abundance and accessibility of proton accelerators make this approach convenient for conducting accelerated radiation ageing studies. However, developing new materials with improved radiation stability requires numerous model materials, test samples, and very effective utilization of the accelerator beam time.
View Article and Find Full Text PDFIn the present study, graphene oxide foils 10 μm thick have been irradiated in vacuum using same charge state (one charge state) ions, such as protons, helium and oxygen ions, at the same energies (3 MeV) and fluences (from 5 × 10 ion/cm to 5 × 10 ion/cm). The structural changes generated by the ion energy deposition and investigated by X-ray diffraction have suggested the generation of new phases, as reduced GO, GO quantum dots and graphitic nanofibers, carbon nanotubes, amorphous carbon and stacked-cup carbon nanofibers. Further analyses, based on Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis, have indicated a reduction of GO connected to the atomic number of implanted ions.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Structural materials of the new generation of nuclear reactors, fission as well as fusion, must often cope with high production rates of transmutation helium. Their testing hence requires either a powerful source of fast neutrons or a high-fluence ion-irradiation facility providing sufficient amounts of high-energy helium to investigate its effect on the material. Most ion irradiation studies, however, concentrate on basic effects such as defect evolution or bubble swelling in narrow near-surface regions modified by ion bombardment.
View Article and Find Full Text PDFThe present work provides an innovative approach to the near-surface slow-positron-beam (SPB) study of structural materials exposed to ion-beam irradiation. This approach enables the use of variable-energy positron annihilation lifetime spectroscopy (PALS) to characterise a wide range of microstructural damage along the ion implantation profile. In a typical application of the SPB PALS technique, positron lifetime is used to provide qualitative information on the size of vacancy clusters as a function of the positron energy, , the probing depth of the spectrometer.
View Article and Find Full Text PDFPositron annihilation spectroscopy (PAS) is widely recognized as a powerful characterization technique in all types of radiation damage studies in nuclear materials. In the past, fission reactor irradiation of reactor pressure vessel (RPV) steels was a primary aim in most studies, while today's applications of PAS in this field are centered around ion implantation experiments in advanced structural materials. These experiments use hydrogen, helium, heavy ions, and their combination to simulate various radiation environments of future nuclear reactors or nuclear research facilities.
View Article and Find Full Text PDFReduced-activativon ferritic/martensitic (RAFM) steels are prospective structural materials for fission/fusion nuclear applications because their radiation and swelling resistance outperforms their austenitic counterparts. In radiation environments with a high production rate of helium, such as fusion or spallation applications, these materials suffer from non-negligible swelling due to the inhibited recombination between vacancy and interstitial-type defects. In this work, swelling in helium-implanted Eurofer 97 steel is investigated with a focus on helium production rates in a wide range of helium/dpa ratios.
View Article and Find Full Text PDFWe have studied processes of gold ion implantation in polyethylene (PE) by theoretical chemistry methods. Car-Parrinello molecular dynamics (CPMD) simulations of collisions and following chemical kinetics considerations lead to the conclusion that chemical bonds between gold atoms and PE chains are formed. We have identified and characterized by a DFT method various stable structures with C-Au, C-Au-C, C-Au-H and C-AuH types of chemical bonds.
View Article and Find Full Text PDF