The combined effects of the channel asymmetry and the closed chain topology on the chain extension, structure factor, and the orientation correlations were studied using coarse-grained molecular dynamics simulations for moderate chain lengths. These effects are related to applications in linearization experiments with a DNA molecule in nanofluidic devices. According to the aspect ratio, the channels are classified as a stripe or slabs.
View Article and Find Full Text PDFWe investigated the recently suggested advantageous analysis of chain linearization experiments with macromolecules confined in a stripe-like channel (Huang and Battacharya, EPL, 2014, 106, 18004) using Monte Carlo simulations. The enhanced chain extension in a stripe, which is due to the significant excluded volume interactions between the monomers in two dimensions, weakens considerably on transition to an experimentally feasible slit-like channel. Based on the chain extension-confinement strength dependence and the structure factor behavior for a chain in a stripe, we infer the excluded volume regime (de Gennes regime) typical for two-dimensional systems.
View Article and Find Full Text PDF