In recent years, organic electronic materials have been shown to be a promising tool, even transplanted in vivo, for transducing light stimuli to non-functioning retinas. Here we developed a bio-hybrid optoelectronic device consisting of patterned organic polymer semiconductors interfaced with an electrolyte solution in a closed sandwich architecture in order to study the photo-response of photosensitive semiconducting layers or patterns in an environment imitating biological extracellular fluids. We demonstrate an artificial retina model composed of on an array of 42,100 pixels made of three different conjugated polymers via inkjet printing with 110 pixels/mm packing density.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Rapid growth of the internet of things and health monitoring systems have stimulated the development of flexible, wearable, and conformal embedded electronics with the unprecedented need for energy storage systems fully adaptable to diverse form factors. Conventional fabrication methods, such as photolithography for electronics and electrode winding/stacking for energy storage systems, struggle as fabrication strategies to produce devices with three-dimensional, stretchable, and conformal form factors. In this study, we demonstrate the fabrication of supercapacitors on 3D objects through inkjet and water-transfer printing.
View Article and Find Full Text PDF