Publications by authors named "Pavlina Rezacova"

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcription. CDK7 plays a pivotal role in cell division and proliferation, and the CDK7 gene often exhibits mutations or copy number loss in cancer. Pharmacological targeting of CDK7 has been proposed as a cancer treatment strategy and several inhibitors are currently in clinical trials.

View Article and Find Full Text PDF

The production of high-quality crystals is a key step in crystallography in general, but control of crystallization conditions is even more crucial in serial crystallography, which requires sets of crystals homogeneous in size and diffraction properties. This protocol describes the implementation of a simple and user-friendly microfluidic device that allows both the production of crystals by the counter-diffusion method and their in situ analysis by serial crystallography. As an illustration, the whole procedure is used to determine the crystal structure of three proteins from data collected at room temperature at a synchrotron radiation source.

View Article and Find Full Text PDF

The first Federation of European Biochemical Societies Advanced Course on macromolecular crystallization was launched in the Czech Republic in October 2004. Over the past two decades, the course has developed into a distinguished event, attracting students, early career postdoctoral researchers and lecturers. The course topics include protein purification, characterization and crystallization, covering the latest advances in the field of structural biology.

View Article and Find Full Text PDF

The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion.

View Article and Find Full Text PDF

Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG-N with 5-ethynyl-dUMP or -dUTP.

View Article and Find Full Text PDF
Article Synopsis
  • The SorC family of proteins helps control how bacteria use sugar and communicate with each other.
  • Scientists studied two specific proteins, DeoR and CggR, from a type of bacteria called Bacillus subtilis using advanced techniques.
  • They discovered how these proteins interact with DNA and learned how two special molecules help regulate a specific gene related to sugar metabolism.
View Article and Find Full Text PDF

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC values as low as 19 nM (human PNP) and 4 nM ( () PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC values as low as 9 nM.

View Article and Find Full Text PDF

Targeting cyclin-dependent kinase 7 (CDK7) provides an interesting therapeutic option in cancer therapy because this kinase participates in regulating the cell cycle and transcription. Here, we describe a new trisubstituted pyrazolo[4,3-d]pyrimidine derivative, LGR6768, that inhibits CDK7 in the nanomolar range and displays favourable selectivity across the CDK family. We determined the structure of fully active CDK2/cyclin A2 in complex with LGR6768 at 2.

View Article and Find Full Text PDF

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3.

View Article and Find Full Text PDF

The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative.

View Article and Find Full Text PDF

Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F.

View Article and Find Full Text PDF

Among non-covalent interactions, B-H⋯π and C-H⋯π hydrogen bonding is rather weak and less studied. Nevertheless, since both can affect the energetics of protein-ligand binding, their understanding is an important prerequisite for reliable predictions of affinities. Through a combination of high-resolution X-ray crystallography and quantum-chemical calculations on carbonic anhydrase II/carborane-based inhibitor systems, this paper provides the first example of B-H⋯π hydrogen bonding in a protein-ligand complex.

View Article and Find Full Text PDF

Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety.

View Article and Find Full Text PDF

3,5,7-Trisubstituted pyrazolo[4,3-]pyrimidines have been identified as potent inhibitors of cyclin-dependent kinases (CDKs), which are established drug targets. Herein, we describe their further structural modifications leading to novel nanomolar inhibitors with strong antiproliferative activity. We determined the crystal structure of fully active CDK2/A2 with 5-(2-amino-1-ethyl)thio-3-cyclobutyl-7-[4-(pyrazol-1-yl)benzyl]amino-1(2)-pyrazolo[4,3-]pyrimidine () at 1.

View Article and Find Full Text PDF
Article Synopsis
  • The SorC/DeoR family is a group of bacteria proteins that help control how bacteria use sugar and communicate with each other.
  • Scientists studied two specific proteins, bsDeoR and bsCggR, from a type of bacteria called Bacillus subtilis to understand how they connect to DNA.
  • They found detailed structures of these proteins when they attach to DNA and discovered they might work in a similar way to other proteins in their family when recognizing DNA.
View Article and Find Full Text PDF

The 3-pyrazolo[4,3-]quinoline moiety has been recently shown to be a privileged kinase inhibitor core with potent activities against acute myeloid leukemia (AML) cell lines in vitro. Herein, various 3-pyrazolo[4,3-]quinoline-containing compounds were rapidly assembled via the Doebner-Povarov multicomponent reaction from the readily available 5-aminoindazole, ketones, and heteroaromatic aldehydes in good yields. The most active compounds potently inhibit the recombinant FLT3 kinase and its mutant forms with nanomolar IC values.

View Article and Find Full Text PDF

The hard tick is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of .

View Article and Find Full Text PDF

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections.

View Article and Find Full Text PDF

This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn ion in the enzyme active site.

View Article and Find Full Text PDF

Pharmacological inhibition of cyclin-dependent kinases has emerged as a possible treatment option for various cancer types. We recently identified substituted imidazo[1,2-c]pyrimidin-5(6H)-ones as inhibitors of cyclin-dependent kinase 2 (CDK2). Here, we report the synthesis of derivatives modified at positions 2, 3, 6 or 8 prepared using Suzuki-Miyaura cross-coupling, halogenation, Dimroth-type rearrangement and alkylation as the main synthetic methods.

View Article and Find Full Text PDF

While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear.

View Article and Find Full Text PDF

Invited for this month's cover is a collaboration from three institutes from the Czech Academy of Sciences: Institute of Inorganic Chemistry, Institute of Organic Chemistry and Biochemistry, and Institute of Molecular Genetics, and the University of Pardubice. The cover picture shows a family of potent and selective CA IX inhibitors that combines the structural motif of a bulky inorganic cobalt bis(dicarbollide) polyhedral ion with a propylsulfonamido anchor group. Read the full text of the article at 10.

View Article and Find Full Text PDF

Azapeptide nitriles are postulated to reversibly covalently react with the active-site cysteine residue of cysteine proteases and form isothiosemicarbazide adducts. We investigated the interaction of azadipeptide nitriles with the cathepsin B1 drug target (SmCB1) from , a pathogen that causes the global neglected disease schistosomiasis. Azadipeptide nitriles were superior inhibitors of SmCB1 over their parent carba analogs.

View Article and Find Full Text PDF

Schistosomiasis, a parasitic disease caused by blood flukes of the genus , is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target.

View Article and Find Full Text PDF