The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.
View Article and Find Full Text PDFTwo-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism.
View Article and Find Full Text PDFThe distribution and geochemistry of arsenic (As) in water and sediments of the Zenne River, a small urban river flowing through Brussels (Belgium), were assessed based on the results of 18 sampling campaigns performed between 2010 and 2021. In general, concentrations of As sharply increase between Vilvoorde and Eppegem and are up to 6-8 times higher in the section downstream of Eppegem in comparison to the upstream part of the Zenne. The monitoring surveys in which the grab water samples were taken at a 1-hour sampling frequency revealed that the large temporal variability in As concentrations found in the downstream part of the river is driven by the tidal cycle.
View Article and Find Full Text PDFThe distribution of mercury species was studied in all aquatic ecosystem components (i.e., water, sediment, emergent aquatic plants, invertebrates and omnivorous and piscivorous fish) of the Záskalská water reservoir (Central Bohemia, Czech Republic) which is in the vicinity of an abandoned cinnabar mine.
View Article and Find Full Text PDFMonitoring of uranium in the environment using the Diffusive Gradients in Thin-films (DGT) technique gains in importance as it can provide unique information about the bioavailability of the element and allows its long-term in-situ measurement. Hence, in this study, four DGT binding phases (Chelex-100, Dow-PIWBA, Diphonix, and Lewatit FO 36 resins) were evaluated for uranium monitoring to assess the robustness of their performance in estuarine and marine environments. These DGTs were deployed along the Scheldt estuary (Belgium and the Netherlands) over four campaigns between 2014 and 2021.
View Article and Find Full Text PDFThe ability of submerged aquatic plants (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum) and a natant plant (Eichhornia crassipes) to bioaccumulate mercury was evaluated in a laboratory experiment as well as in a real aquatic ecosystem situated in the vicinity of a cinnabar mine. Moreover, the ability of the diffusive gradients in the thin films technique (DGT) to predict mercury bioavailability for selected aquatic plants was tested. The submerged plants had sufficient bioaccumulation capacity for long-term phytoaccumulation of mercury in a real aquatic ecosystem.
View Article and Find Full Text PDFThe intensive use of insecticides in global agricultural production has attracted much attention due to its many adverse effects on human health and the environment. In recent years, the utilization of nanotechnology has emerged as a tool to overcome these adverse effects. The aim of this work was to test different microparticles (zinc oxide (ZnO MPs) and silicon dioxide microparticles (SiO MPs)), and silver nanoparticles (Ag NPs) and to study their toxicity on a model organism, Tenebrio molitor.
View Article and Find Full Text PDFKnowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables.
View Article and Find Full Text PDFThe sorption ability of Lewatit FO 36-DGT resin gel, which has been developed for arsenic determination, towards uranium was tested by batch experiments within this study for the first time. Since the uptake efficiency of uranium was 99.0 ± 0.
View Article and Find Full Text PDFSelenium nanoparticles (SeNPs) are fast becoming a key instrument in several applications such as medicine or nutrition. Questions have been raised about the safety of their use. Male rats were fed for 28 days on a monodiet containing 0.
View Article and Find Full Text PDFKnowledge of the fractionation of mercury in soils in the vicinity of abandoned cinnabar mines is essential for assessing the usability of soils for the cultivation of agriculturally important crops. Two different sequential extraction methods and the technique of diffusive gradients in thin films (DGT) were applied and compared for fractionation of mercury in soils from mercury-contaminated sites intended for farming purposes. The mercury found in these soils was primarily in the form of mercury sulfide (58.
View Article and Find Full Text PDFAn ion-exchange resin Lewatit FO 36 was used for the preparation of a new resin gel for the diffusive gradient in thin films technique (DGT). The DGT method was optimized for the accumulation of four bioavailable arsenic species (As, As, monomethylarsonic acid, dimethylarsinic acid) in the aquatic environment. The total sorption capacity of Lewatit FO 36 resin gel was 535 μg As disc.
View Article and Find Full Text PDFThe diffusive gradients in thin films technique (DGT) was used for the determination of bioavailable mercury in urban soils, and results were compared to the mercury accumulation by Pisum sativum L. (pea) parts (leaf, root, stem, blossom, legume, and green seed). The total mercury concentration in soil samples was ranged between 0.
View Article and Find Full Text PDFWe assessed the relationship between the diffusive gradient in thin film (DGT) technique using the new ion-exchange resin Ambersep GT74 and the uptake of mercury (Hg) by a model plant cultivated on metal-contaminated agricultural soils under greenhouse conditions. Based on the total Hg content, 0.37 to 1.
View Article and Find Full Text PDFThe ability of the DGT technique to predict Hg bioavailability for input tissues (skin, gills, and scales) of common carp in the presence of chloride ions and humic acid (HA) was evaluated. The mercury accumulation by the DGT units and input tissues of carp decreased with an increasing concentration of chloride ions (29-180 mg L) and HA (0-5 mg L). In the presence of chloride ions and HA, statistically significant correlations (Pearson's correlation coefficients 0.
View Article and Find Full Text PDFThe mercury bioaccumulation by common carp (Cyprinus carpio L.) tissues (gills, skin, eyes, scales, muscle, brain, kidneys, liver, and spleen) and the capability of the diffusive gradient in thin film (DGT) technique to predict bioavailability of mercury for individual carp's tissues were evaluated. Carp and DGT units were exposed to increasing concentrations of mercury (Hg: 0 μg L, 0.
View Article and Find Full Text PDFHeavy metal pollution is an important concern because of its potential to affect human health. This study was conducted to analyze plants growing on a landfill body and in its surroundings to determine their potential for heavy metal accumulation. In addition, the enrichment coefficient (EC) for the plant/soil system was used for determining the environmental contamination from a landfill in terms of heavy metal accumulation.
View Article and Find Full Text PDFA diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg(2+), CH3Hg(+), C2H5Hg(+), and C6H5Hg(+)). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively.
View Article and Find Full Text PDFThe diffusive gradients in thin films (DGT) technique, utilizing resin gel with ion-exchange resin Duolite GT73 and new ion-exchange resin Ambersep GT74, was investigated for the accumulation of four mercury species (Hg(2+), CH3Hg(+), C2H5Hg(+), C6H5Hg(+)). The diffusion coefficients of mercury species in agarose gel calculated on the basis of Fick's Law were mercury species-specific. The diffusion coefficients of Hg(2+) and CH3Hg(+) at 25 °C (9.
View Article and Find Full Text PDFThe molecularly imprinted SPE directly coupled to RP LC-MS/MS method has been developed and successfully validated for the determination of six hormones in water and sediment samples. The method is based on the use the home-made column filled with a molecularly imprinted sorbent (imprinted against estrogens) that was used under nonaqueous conditions. Thus, its high selectivity could be utilized resulting in low matrix components' coextraction.
View Article and Find Full Text PDFBasic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems.
View Article and Find Full Text PDFPolyelectrolyte multilayers deposited on the wall of fused silica capillaries were used as stationary phases in open tubular ion chromatography. The multilayers were formed by flushing the capillaries with solutions of polyanions and polycations such as polydiallyldimethylammonium chloride and dextran sulphate. Columns with several bi-layers were constructed and used in low pressure non-suppressed open tubular ion chromatography of common inorganic anions (F(-), Cl(-), NO(3)(-)) and cations (Li(+), Na(+), NH(4)(+), K(+), Cs(+)) with contactless conductometric detection.
View Article and Find Full Text PDFThis review provides an update on mercury speciation by CE. It includes a brief discussion on physicochemical properties, toxicity and transformation pathways of mercury species (i.e.
View Article and Find Full Text PDFWe describe ion chromatography (IC) on open tubular cation exchange columns with a controllable capacity multilayered stationary phase architecture. The columns of relatively large bore (75 microm id) are fabricated by coating fused-silica capillaries with multiple layers of poly(butadiene-maleic acid) (PBMA) copolymer and crosslinking the deposited layers by thermally initiated radical polymerisation. Column capacity increases in a predictable manner with increase in the number of successively coated layers.
View Article and Find Full Text PDF