Publications by authors named "Pavla Navratilova"

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals.

View Article and Find Full Text PDF

Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom.

View Article and Find Full Text PDF

The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, that is a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them.

View Article and Find Full Text PDF

Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat.

View Article and Find Full Text PDF

Background: In phylogenetically diverse organisms, the 5' ends of a subset of mRNAs are trans-spliced with a spliced leader (SL) RNA. The functions of SL trans-splicing, however, remain largely enigmatic.

Results: We quantified translation genome-wide in the marine chordate, Oikopleura dioica, under inhibition of mTOR, a central growth regulator.

View Article and Find Full Text PDF

Background: Development is largely driven by transitions between transcriptional programs. The initiation of transcription at appropriate sites in the genome is a key component of this and yet few rules governing selection are known. Here, we used cap analysis of gene expression (CAGE) to generate bp-resolution maps of transcription start sites (TSSs) across the genome of Oikopleura dioica, a member of the closest living relatives to vertebrates.

View Article and Find Full Text PDF

Background: In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes.

View Article and Find Full Text PDF

Background: Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood.

View Article and Find Full Text PDF

Greying with age in horses is an autosomal dominant trait, characterized by hair greying, high incidence of melanoma and vitiligo-like depigmentation. Previous studies have revealed that the causative mutation for this phenotype is a 4.6-kb intronic duplication in STX17 (Syntaxin 17).

View Article and Find Full Text PDF

Genome-wide association studies identified noncoding SNPs associated with type 2 diabetes and obesity in linkage disequilibrium (LD) blocks encompassing HHEX-IDE and introns of CDKAL1 and FTO [Sladek R, et al. (2007) Nature 445:881-885; Steinthorsdottir V, et al. (2007) Nat.

View Article and Find Full Text PDF

We used the classic example of the duplicated zebrafish sox11a and -b loci to test the duplication, degeneration, complementation (DDC) model of genome evolution through whole genome duplication. While recent reports have demonstrated sub-partitioning of regulatory sequences in duplicated regions, a comparison of the regulatory capabilities of extant regulatory sequences derived from ancient ancestral elements has been scarce. Consistent with the DDC model, we find that ancestral regulatory elements distributed over several hundred kb were lost in either one or the other zebrafish duplicate, leading to subpartitioning.

View Article and Find Full Text PDF

Using a comparative genomics approach to reconstruct the fate of genomic regulatory blocks (GRBs) and identify exonic remnants that have survived the disappearance of their host genes after whole-genome duplication (WGD) in teleosts, we discover a set of 38 candidate cis-regulatory coding exons (RCEs) with predicted target genes. These elements demonstrate evolutionary separation of overlapping protein-coding and regulatory information after WGD in teleosts. We present evidence that the corresponding mammalian exons are still under both coding and non-coding selection pressure, are more conserved than other protein coding exons in the host gene and several control sets, and share key characteristics with highly conserved non-coding elements in the same regions.

View Article and Find Full Text PDF

Despite a recent explosion in the production of vertebrate genome sequence data and large-scale efforts to completely annotate the human genome, we still have scant knowledge of the principles that built vertebrate genomes in evolution, and of genome architecture and its functional significance. We review approaches using bioinformatics, zebrafish transgenesis, and recent findings in the molecular basis of gene regulation and tie these in with mechanisms for the maintenance of long-range conserved synteny across all vertebrate genomes. Specifically, we discuss the recently discovered genomic regulatory blocks which we argue are principal units of vertebrate genome evolution and serve as the foundations onto which evolutionary innovations are built through sequence evolution and insertion of new cis-regulatory elements.

View Article and Find Full Text PDF

Pan-vertebrate developmental cis-regulatory elements are discernible as highly conserved noncoding elements (HCNEs) and are often dispersed over large areas around the pleiotropic genes whose expression they control. On the loci of two developmental transcription factor genes, SOX3 and PAX6, we demonstrate that HCNEs conserved between human and zebrafish can be systematically and reliably tested for their regulatory function in multiple stable transgenes in zebrafish, and their genomic reach estimated with confidence using synteny conservation and HCNE density along these loci. HCNEs of both human and zebrafish function as specific developmental enhancers in zebrafish.

View Article and Find Full Text PDF

We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes.

View Article and Find Full Text PDF