Over the past decades, several types of passive samplers have been developed and used to monitor polar organic compounds in aquatic environments. These samplers use different sorbents and barriers to control the uptake into the sampler, but their performance comparison is usually not well investigated. This study aimed to directly compare the performance of three samplers, i.
View Article and Find Full Text PDFMonitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production.
View Article and Find Full Text PDFAn upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm) than a typical o-DGT sampler (3.14 cm) was tested in several field studies.
View Article and Find Full Text PDFNon-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows.
View Article and Find Full Text PDFThe concentrations of hydrophobic organic compounds (HOCs) in aquatic biota are used for compliance, as well as time and spatial trend monitoring in the aqueous environment (European Union water framework directive, OSPAR). Because of trophic magnification in the food chain, the thermodynamic levels of HOCs, for example, polychlorinated biphenyl congeners, dichlorodiphenyltrichloroethane, and brominated diphenyl ether congeners, in higher trophic level (TL) organisms are expected to be strongly elevated above those in water. This work compares lipid-based concentrations at equilibrium with the water phase derived from aqueous passive sampling () with the lipid-based concentrations in fillet and liver of fish () at different TLs for three water bodies in the Czech Republic and Slovakia.
View Article and Find Full Text PDF