Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean.
View Article and Find Full Text PDFBackground: Heterotrophic microbes in the Southern Ocean are challenged by the double constraint of low concentrations of organic carbon (C) and iron (Fe). These essential elements are tightly coupled in cellular processes; however, the prokaryotic requirements of C and Fe under varying environmental settings remain poorly studied. Here, we used a combination of metatranscriptomics and metaproteomics to identify prokaryotic membrane transporters for organic substrates and Fe in naturally iron-fertilized and high-nutrient, low-chlorophyll waters of the Southern Ocean during spring and late summer.
View Article and Find Full Text PDFFungi have shaped the biosphere since the development of life on Earth. Despite fungi being present in all environments, most of the available fungal research has focused on soils. As a result, the role and composition of fungal communities in aquatic (marine and freshwater) environments remain largely unexplored.
View Article and Find Full Text PDFIron (Fe) governs the cycling of organic carbon in large parts of the Southern Ocean. The strategies of diverse microbes to acquire the different chemical forms of Fe under seasonally changing organic carbon regimes remain, however, poorly understood. Here, we report high-resolution seasonal metagenomic observations from the region off Kerguelen Island (Indian Sector of the Southern Ocean) where natural Fe-fertilization induces consecutive spring and summer phytoplankton blooms.
View Article and Find Full Text PDFMarine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages.
View Article and Find Full Text PDFMarine microbes are major drivers of all elemental cycles. The processing of organic carbon by heterotrophic prokaryotes is tightly coupled to the availability of the trace element iron in large regions of the Southern Ocean. However, the functional diversity in iron and carbon metabolism within diverse communities remains a major unresolved issue.
View Article and Find Full Text PDFIron (Fe) is a limiting nutrient in large regions of the ocean, but the strategies of prokaryotes to cope with this micronutrient are poorly known. Using a gene-specific approach from metatranscriptomics data, we investigated seven Fe-related metabolic pathways in microbial communities from high nutrient low chlorophyll and naturally Fe-fertilized waters in the Southern Ocean. We observed major differences in the contribution of prokaryotic groups at different taxonomic levels to transcripts encoding Fe-uptake mechanisms, intracellular Fe storage and replacement and Fe-related pathways in the tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFThe interplay among microorganisms profoundly impacts biogeochemical cycles in the ocean. Culture-based work has illustrated the diversity of diatom-prokaryote interactions, but the question of whether these associations can affect the spatial distribution of microbial communities is open. Here, we investigated the relationship between assemblages of diatoms and of heterotrophic prokaryotes in surface waters of the Indian sector of the Southern Ocean in early spring.
View Article and Find Full Text PDF