Publications by authors named "Pavitra Ramachandran"

Purpose: Optogenetic gene therapy to render remaining retinal cells light-sensitive in end-stage retinal degeneration is a promising strategy for treatment of individuals blind because of a variety of different inherited retinal degenerations. The clinical trials currently in progress focus on delivery of optogenetic genes to ganglion cells. Delivery of optogenetic molecules to cells in the outer neural retina is predicted to be even more advantageous because it harnesses more of the retinal circuitry.

View Article and Find Full Text PDF

Choroideremia (CHM) is a rare monogenic, X-linked recessive inherited retinal degeneration resulting from mutations in the Rab Escort Protein-1 (REP1) encoding CHM gene. The primary retinal cell type leading to CHM is unknown. In this study, we explored the utility of induced pluripotent stem cell-derived models of retinal pigmented epithelium (iPSC-RPE) to study disease pathogenesis and a potential gene-based intervention in four different genetically distinct forms of CHM.

View Article and Find Full Text PDF

There has been marked progress in recent years in developing gene delivery approaches for the treatment of inherited blinding diseases. Many of the proof-of-concept studies have utilized rodent models of retinal degeneration. In those models, tests of visual function include a modified water maze swim test, optokinetic nystagmus, and light-dark activity assays.

View Article and Find Full Text PDF

Within the next decade, we will see many gene therapy clinical trials for eye diseases, which may lead to treatments for thousands of visually impaired people around the world. To target retinal diseases that affect specific cell types, several recombinant adeno-associated virus (AAV) serotypes have been generated and used successfully in preclinical mouse studies. Because there are numerous anatomic and physiologic differences between the eyes of mice and "men" and because surgical delivery approaches and immunologic responses also differ between these species, this study evaluated the transduction characteristics of two promising new serotypes, AAV7m8 and AAV8BP2, in the retinas of animals that are most similar to those of humans: non-human primates (NHPs).

View Article and Find Full Text PDF

All 302 neurons in the C. elegans hermaphrodite arise through asymmetric division of neuroblasts. During embryogenesis, the C.

View Article and Find Full Text PDF

The use of gene therapy for blinding disease shows growing promise; however, due to an ever-expanding list of disease-causing genes and mutations, the identification of a generic gene-based treatment is urgently needed. In many forms of degenerative retinal disease, there may be a window of opportunity to preserve daylight vision, as the cone photoreceptors degenerate more slowly than do the rods. In this issue of the JCI, Venkatesh et al.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 7 (SCA7) is a late-onset neurodegenerative disease characterized by ataxia and vision loss with no effective treatments in the clinic. The most striking feature is the degeneration of Purkinje neurons of the cerebellum caused by the presence of polyglutamine-expanded ataxin-7. Ataxin-7 is part of a transcriptional complex, and, in the setting of mutant ataxin-7, there is misregulation of target genes.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disease characterized by loss of motor coordination and retinal degeneration with no current therapies in the clinic. The causative mutation is an expanded CAG repeat in the ataxin-7 gene whose mutant protein product causes cerebellar and brainstem degeneration and retinal cone-rod dystrophy. Here, we reduced the expression of both mutant and wildtype ataxin-7 in the SCA7 mouse retina by RNA interference and evaluated retinal function 23 weeks post injection.

View Article and Find Full Text PDF

Over the last decade, RNA interference technology has shown therapeutic promise in rodent models of dominantly inherited brain diseases, including those caused by polyglutamine repeat expansions in the coding region of the affected gene. For some of these diseases, proof-of concept studies in model organisms have transitioned to safety testing in larger animal models, such as the nonhuman primate. Here, we review recent progress on RNA interference-based therapies in various model systems.

View Article and Find Full Text PDF