Publications by authors named "Pavithra M Naullage"

The adsorption of large rod-like molecules or crystallites on a flat crystal face, similar to Buffon's needle, requires the rods to "land," with their binding sites in precise orientational alignment with matching sites on the surface. An example is provided by long, helical antifreeze proteins (AFPs), which bind at specific facets and orientations on the ice surface. The alignment constraint for adsorption, in combination with the loss in orientational freedom as the molecule diffuses toward the surface, results in an entropic barrier that hinders the adsorption.

View Article and Find Full Text PDF

Intrinsically disordered proteins and unfolded proteins have fluctuating conformational ensembles that are fundamental to their biological function and impact protein folding, stability, and misfolding. Despite the importance of protein dynamics and conformational sampling, time-dependent data types are not fully exploited when defining and refining disordered protein ensembles. Here we introduce a computational framework using an elastic network model and normal-mode displacements to generate a dynamic disordered ensemble consistent with NMR-derived dynamics parameters, including transverse relaxation rates and Lipari-Szabo order parameters ( values).

View Article and Find Full Text PDF

Some of the most potent antifreeze proteins (AFPs) are approximately rigid helical structures that bind with one side in contact with the ice surface at specific orientations. These AFPs take random orientations in solution; however, most orientations become sterically inaccessible as the AFP approaches the ice surface. The effect of these inaccessible orientations on the rate of adsorption of AFP to ice has never been explored.

View Article and Find Full Text PDF

Recognition and binding of ice by proteins, crystals, and other surfaces is key for their control of the nucleation and growth of ice. Docking is the state-of-the-art computational method to identify ice-binding surfaces (IBS). However, docking methods require a priori knowledge of the ice plane to which the molecules bind and either neglect the competition of ice and water for the IBS or are computationally expensive.

View Article and Find Full Text PDF

Ice recrystallization inhibitors (IRI) are of critical importance in biology, cryopreservation of cells and organs, and frozen foods. Antifreeze glycoproteins (AFGPs) are the most potent IRI. Their cost and cytotoxicity drive the design of synthetic flexible polymers that mimic their function.

View Article and Find Full Text PDF

Methane hydrates can be preserved at ambient pressure, beyond their region of thermodynamic stability, by storing them at temperatures from 240 to 270 K. The origin of this anomalous self-preservation is the formation of an ice coating that covers the clathrate particles and prevents further loss of gas. While there have been several studies on self-preservation, the question of what is the mechanism by which ice nucleates on the decomposing clathrate hydrates has not yet been fully explained.

View Article and Find Full Text PDF

Clathrate hydrates can spontaneously form under typical conditions found in oil and gas pipelines. The agglomeration of clathrates into large solid masses plugs the pipelines, posing adverse safety, economic, and environmental threats. Surfactants are customarily used to prevent the aggregation of clathrate particles and their coalescence with water droplets.

View Article and Find Full Text PDF

The slow nucleation of clathrate hydrates is a central challenge for their use in the storage and transportation of natural gas. Molecules that strongly adsorb to the clathrate-water interface decrease the crystal-water surface tension, lowering the barrier for clathrate nucleation. Surfactants are widely used to promote the nucleation and growth of clathrate hydrates.

View Article and Find Full Text PDF

Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7grehog80rehf7tsmf15ek38orgg517n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once