Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model.
View Article and Find Full Text PDFIn 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly.
View Article and Find Full Text PDF