Publications by authors named "Pavel Zelenin"

Acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Here, to reveal changes in the operation of postural networks underlying the recovery, male rabbits with recovered postural functions after LHS at T12 (R-rabbits) were used. After decerebration, we characterized the responses of individual spinal interneurons from L5 along with hindlimb EMG responses to stimulation causing postural limb reflexes (PLRs) that substantially contribute to postural corrections in intact animals.

View Article and Find Full Text PDF

Higher vertebrates are capable not only of forward but also backward and sideways locomotion. Also, single steps in different directions are generated for postural corrections. While the networks responsible for the control of forward walking (FW) have been studied in considerable detail, the networks controlling steps in other directions are mostly unknown.

View Article and Find Full Text PDF

Locomotion, scratching, and stabilization of the body orientation in space are basic motor functions which are critically important for animal survival. Their execution requires coordinated activity of muscles located in the left and right halves of the body. Commissural interneurons (CINs) are critical elements of the neuronal networks underlying the left-right motor coordination.

View Article and Find Full Text PDF

Key Points: Epidural electrical stimulation (ES) of the spinal cord restores/improves locomotion in patients. ES-evoked locomotor movements differ to some extent from the normal ones. Operation of the locomotor network during ES is unknown.

View Article and Find Full Text PDF

Mice are frequently used in analyses of the locomotor system. Although forward locomotion (FWL) in intact mice has been studied previously, backward locomotion (BWL) in mice has never been analyzed. The aim of the present study was to compare kinematics of FWL and BWL performed in different environmental conditions (i.

View Article and Find Full Text PDF

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification.

View Article and Find Full Text PDF

Postural limb reflexes (PLRs) are an essential component of postural corrections. Spinalization leads to disappearance of postural functions (including PLRs). After spinalization, spastic, incorrectly phased motor responses to postural perturbations containing oscillatory EMG bursting gradually develop, suggesting plastic changes in the spinal postural networks.

View Article and Find Full Text PDF

Locomotion, that is active propulsive movement of the body in space, is a vital motor function. Intensive studies of the main, for the majority of living beings, form of locomotion, forward locomotion, have revealed essential features of the organization and operation of underlying neural mechanisms. However, animals and humans are capable to locomote not only forward but also in other directions in relation to the body axis, e.

View Article and Find Full Text PDF

Higher vertebrates, including humans, are capable not only of forward (FW) locomotion but also of walking in other directions relative to the body axis [backward (BW), sideways, etc.]. Although the neural mechanisms responsible for controlling FW locomotion have been studied in considerable detail, the mechanisms controlling steps in other directions are mostly unknown.

View Article and Find Full Text PDF

Key Points: Small transmembrane proteins such as FXYDs, which interact with Na ,K -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage.

View Article and Find Full Text PDF

Key Points: Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications. To study this issue, we took advantage of an in vitro brainstem-spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour. Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.

View Article and Find Full Text PDF

Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously.

View Article and Find Full Text PDF

The dorsal-side-up trunk orientation in standing quadrupeds is maintained by the postural system driven mainly by somatosensory inputs from the limbs. Postural limb reflexes (PLRs) represent a substantial component of this system. Earlier we described spinal neurons presumably contributing to the generation of PLRs.

View Article and Find Full Text PDF

Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different.

View Article and Find Full Text PDF

In quadrupeds, the most critical aspect of postural control during locomotion is lateral stability. However, neural mechanisms underlying lateral stability are poorly understood. Here, we studied lateral stability in decerebrate cats walking on a treadmill with their hindlimbs.

View Article and Find Full Text PDF

Forward locomotion has been extensively studied in different vertebrate animals, and the principal role of spinal mechanisms in the generation of this form of locomotion has been demonstrated. Vertebrate animals, however, are capable of other forms of locomotion, such as backward walking and swimming, sideward walking, and crawling. Do the spinal mechanisms play a principal role in the generation of these forms of locomotion? We addressed this question in lampreys, which are capable of five different forms of locomotion - fast forward swimming, slow forward swimming, backward swimming, forward crawling, and backward crawling.

View Article and Find Full Text PDF

Postural limb reflexes (PLRs) represent a substantial component of the postural system responsible for stabilization of dorsal-side-up trunk orientation in quadrupeds. Spinalization causes spinal shock, that is a dramatic reduction of extensor tone and spinal reflexes, including PLRs. The goal of our study was to determine changes in activity of spinal interneurons, in particular those mediating PLRs, that is caused by spinalization.

View Article and Find Full Text PDF

In lampreys, stretch receptor neurons (SRNs) are located at the margins of the spinal cord and activated by longitudinal stretch in that area caused by body bending. The aim of this study was a comprehensive analysis of motor responses to bending of the lamprey body in different planes and at different rostrocaudal levels. For this purpose, in vitro preparation of the spinal cord isolated together with notochord was used, and responses to bending were recorded from SRNs, as well as from motoneurons innervating the dorsal (dMNs) and ventral (vMNs) parts of a myotome.

View Article and Find Full Text PDF

Most bipeds and quadrupeds, in addition to forward walking, are also capable of backward and sideward walking. The direction of walking is determined by the direction of stepping movements of individual limbs in relation to the front-to-rear body axis. Our goal was to assess the functional organization of the system controlling the direction of stepping.

View Article and Find Full Text PDF

The postural system maintains a specific body orientation and equilibrium during standing and during locomotion in the presence of many destabilizing factors (external and internal). Numerous studies in humans have revealed essential features of the functional organization of this system. Recent studies on different animal models have significantly supplemented human studies.

View Article and Find Full Text PDF

The activity of the motor cortex during locomotion is profoundly modulated in the rhythm of strides. The source of modulation is not known. In this study we examined the activity of one of the major sources of afferent input to the motor cortex, the ventrolateral thalamus (VL).

View Article and Find Full Text PDF

During locomotion, neurons in motor cortex exhibit profound step-related frequency modulation. The source of this modulation is unclear. The aim of this study was to reveal the contribution of different limb controllers (locomotor mechanisms of individual limbs) to the periodic modulation of motor cortex neurons during locomotion.

View Article and Find Full Text PDF

The dorsal-side-up body posture in standing quadrupeds is maintained by the postural system, which includes spinal and supraspinal mechanisms driven by somatosensory inputs from the limbs. A number of descending tracts can transmit supraspinal commands for postural corrections. The first aim of this study was to understand whether the rubrospinal tract participates in their transmission.

View Article and Find Full Text PDF

Two forms of undulatory locomotion in the lamprey (a lower vertebrate) have been described earlier: fast forward swimming (FFS) used for long distance migrations and slow backward swimming (SBS) used for escape from adverse tactile stimuli. In the present study, we describe another form of escape behavior: slow forward swimming (SFS). We characterize the kinematic and electromyographic patterns of SFS and compare them with SBS and FFS.

View Article and Find Full Text PDF

This paper briefly summarizes the studies of nervous mechanisms controlling the body posture, which were performed in the Department of Neuroscience of the Karolinska Institute during the last decade. Postural mechanisms were investigated in "animal models" of different complexity--the mollusk, lamprey, rabbit, and cat. The following problems were addressed: (1) functional organization of the postural system; (2) localization of postural functions in the mammalian CNS; (3) postural networks; (4) impairment of postural control caused by vestibular deficit.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont0ug8kjkjfbnro4spd1hg1q8cg6nfe8t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once