Publications by authors named "Pavel V Belan"

Previously, we have characterized the capsaicin-insensitive low pH-sensitive (capslpH) subtype of small-sized nociceptive dorsal root ganglion (DRG) neurons that express acid-sensing ion channels, T-type Ca channels, and have isolectin B4-negative phenotype. These neurons demonstrated increased excitability in a model of long-term diabetes, contributing to chronic pain sensation. Here we studied changes in the excitability of the capslpH neurons and underlying changes in the functional expression and gating properties of ion channels under complete Freund's adjuvant (CFA)-induced peripheral inflammation.

View Article and Find Full Text PDF

Background: Previous studies have shown that increased excitability of capsaicin-sensitive DRG neurons and thermal hyperalgesia in rats with short-term (2-4 weeks) streptozotocin-induced diabetes is mediated by upregulation of T-type Ca(2+) current. In longer-term diabetes (after the 8th week) thermal hyperalgesia is changed to hypoalgesia that is accompanied by downregulation of T-type current in capsaicin-sensitive small-sized nociceptors. At the same time pain symptoms of diabetic neuropathy other than thermal persist in STZ-diabetic animals and patients during progression of diabetes into later stages suggesting that other types of DRG neurons may be sensitized and contribute to pain.

View Article and Find Full Text PDF

When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1 mm recording area of a MED exhibited correlated FOFR. Neither the mechanism of FOFR nor the mechanism of their synchronization among neurons is known.

View Article and Find Full Text PDF

T-type Ca²⁺ channels are known as important participants of nociception and their remodeling contributes to diabetes-induced alterations of pain sensation. In this work we have established that about 30% of rat nonpeptidergic thermal C-type nociceptive (NTCN) neurons of segments L4-L6 express a slow T-type Ca²⁺ current (T-current) while a fast T-current is expressed in the other 70% of these neurons. Streptozotocin-induced diabetes in young rats resulted in thermal hyperalgesia, hypoalgesia, or normalgesia 5-6 weeks after the induction.

View Article and Find Full Text PDF

Patterns of short-term synaptic plasticity could considerably differ between synapses of the same axon. This may lead to separation of synaptic receptors transmitting either low- or high-frequency signals and, therefore, may have functional consequences for the information transfer in the brain. Here, we estimated a degree of such separation at hippocampal GABAergic synapses using a use-dependent GABAA receptor antagonist, picrotoxin, to selectively suppress a pool of GABAA receptors monosynaptically activated during the low-frequency stimulation.

View Article and Find Full Text PDF

Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception.

View Article and Find Full Text PDF

A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from macroscopic currents. The method uses both the time course and the strength of correlations between different time points of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel states as opposed to the cubic dependence in a previously described method.

View Article and Find Full Text PDF

Based on the effect of prolonged tetanic stimulation (30 Hz, 4 sec), we divided GABAergic synaptic connections in hippocampal cell cultures into two groups: connections facilitated ( approximately 45%) and connections depressed ( approximately 55%) by the tetanic stimulation. In order to reveal possible reasons for the differential effect of the tetanization, we compared several properties of the connections belonging to both groups. We found that, on average, evoked IPSCs in the connections facilitated by the tetanization have a smaller amplitude and larger coefficient of variation (CV) of IPSC amplitude compared to connections depressed by the tetanization.

View Article and Find Full Text PDF

The effect of tetanic stimulation (30 Hz, 4 s) on evoked GABAergic inhibitory postsynaptic currents (IPSCs) was studied in cell cultures of dissociated hippocampal neurons with established synaptic connections. It was found that tetanic stimulation elicited post-tetanic depression (PTD) of the evoked IPSCs with a duration of more than 50 s in about 60% of the connections tested; post-tetanic potentiation was induced in 25% of the connections. We propose that the opposite effects of tetanization on IPSC amplitude are due to differences in the type of the interneuron that was tetanized.

View Article and Find Full Text PDF