Publications by authors named "Pavel Tofel"

Global concerns over energy availability and the environment impose an urgent requirement for sustainable manufacturing, usage, and disposal of electronic components. Piezoelectric and photovoltaic components are being extensively used. They contain the hazardous element, Pb (e.

View Article and Find Full Text PDF

Utilizing the triboelectric effect of the fibrous structure, a very low cost and straightforward sensor or an energy harvester can be obtained. A device of this kind can be flexible and, moreover, it can exhibit a better output performance than a device based on the piezoelectric effect. This study is concerned with comparing the properties of triboelectric devices prepared from polyvinylidene fluoride (PVDF) fibers, polyamide 6 (PA) fibers, and fibrous structures consisting of a combination of these two materials.

View Article and Find Full Text PDF

This paper is focused on the comparative study of the vibration sensing capabilities of poly(vinylidene fluoride) (PVDF) sheets. The main parameters such as molecular weight, initial sample thickness, stretching and poling were systematically applied, and their impact on sensing behavior was examined. The mechanical properties of prepared sheets were investigated via tensile testing on the samples with various initial thicknesses.

View Article and Find Full Text PDF

With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) is a modern polymer material used in a wide variety of ways. Thanks to its excellent resistance to chemical or thermal degradation and low reactivity, it finds use in biology, chemistry, and electronics as well. By enriching the polymer with an easily accessible and cheap variant of graphite, it is possible to affect the ratio of crystalline phases.

View Article and Find Full Text PDF

Electrospinning as a versatile technique producing nanofibers was employed to study the influence of the processing parameters and chemical and physical parameters of solutions on poly(vinylidene fluoride) (PVDF) fibers' morphology, crystallinity, phase composition and dielectric and piezoelectric characteristics. PVDF fibrous layers with nano- and micro-sized fiber diameters were prepared by a controlled and reliable electrospinning process. The fibers with diameters from 276 nm to 1392 nm were spun at a voltage of 25 kV-50 kV from the pure PVDF solutions or in the presence of a surfactant-Hexadecyltrimethylammonium bromide (CTAB).

View Article and Find Full Text PDF

Modern day pencil lead is a material of many possibilities. Manufacture process is fast, easy, and well established, yet the full potential of its use still remains to be uncovered. Graphite content ratio to binding clays determines basic properties of the lead like its toughness and color, but more interesting qualities like conductivity and reactivity as well.

View Article and Find Full Text PDF

An ABO -type perovskite solid-solution, (K Na )NbO (KNN) doped with 2 mol% Ba(Ni Nb )O (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition-pure KNN-and other widely used piezoelectric and pyroelectric materials (e.

View Article and Find Full Text PDF