Publications by authors named "Pavel Timchenko"

Biopolymers based on the amniotic membrane compare favorably with synthetic materials in that, along with a specific 2D structure, they have biologically active properties. However, in recent years, there has been a tendency to perform decellularization of the biomaterial during the preparation of the scaffold. In this study, we studied the microstructure of 157 samples and identified individual biological components in the manufacture of a medical biopolymer from an amniotic membrane using various methods.

View Article and Find Full Text PDF

Natural biopolymers demonstrate significant bone and connective tissue-engineering application efficiency. However, the quality of the biopolymer directly depends on microstructure and biochemical properties. This study aims to investigate the biocompatibility and microstructural properties of demineralized human spongiosa Lyoplast (Samara, Russian Federation).

View Article and Find Full Text PDF

The objective of this work was to use Raman spectroscopy to assess hard dental tissues after professional oral hygiene treatment and curettage. Spectral changes were identified, and the discriminant model of the specific changes of intensity of the Raman lines (i.e.

View Article and Find Full Text PDF

The results of experimental studies of the tissues of teeth with periodontitis, using the Raman spectroscopy method, are presented in this work. Spectral changes in the tissues of teeth with periodontitis were identified, and the results can be used for the correction of treatment of this disease in dental practice. Criteria for the noninvasive diagnosis of periodontitis, based on changes in tooth enamel spectral properties, were developed.

View Article and Find Full Text PDF

We report the results of experimental studies on cardiac implants using a Raman spectroscopy method (RS). Raman spectra characteristics of leaves and walls of cardiac implants were obtained; the implants were manufactured by protocols of detergent-enzymatic technique (DET) and biological, detergent-free (BIO) decellularization, using detergents (group DET) or a detergent-free, nonproteolytic, actin-disassembling regimen (BIO). There were input optical coefficients that allowed us to carry out evaluation of the protocols of DET and BIO decellularization on the basis of the concentrations of glycosaminoglycans, proteins, amides, and DNA.

View Article and Find Full Text PDF

Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen.

View Article and Find Full Text PDF