Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa - spiders and birds - to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa.
View Article and Find Full Text PDFThe phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera-Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction.
View Article and Find Full Text PDF(Insecta: Hemiptera: Heteroptera: Enicocephalomorpha: Enicocephalidae) is established for a single macropterous female from Ecuador. The enigmatic genus now includes three species known from only two Neotropical adults and an incomplete female specimen. The new species is described and illustrated, extensive comparative diagnoses for species are provided, and nomenclature, distribution, and biology of the genus are reviewed.
View Article and Find Full Text PDFSocial learning plays an important role in acquiring new foraging skills and food preferences in many bird species but its potential role in learning to avoid aposematic prey has never been studied. We tested the effect of social learning on the acquisition of avoidance of aposematic insect prey (firebug Pyrrhocoris apterus; Heteroptera) in juvenile, hand-reared great tits (Parus major). Behaviour towards aposematic prey was compared between two groups of birds: (1) the observers that were, prior to encounter with firebugs, allowed to watch the experienced conspecific demonstrator repeatedly refuse to attack the prey, and (2) the control birds that lacked this opportunity.
View Article and Find Full Text PDFThe true bugs (Hemiptera: Heteroptera) have evolved a system of well-developed scent glands that produce diverse and frequently strongly odorous compounds that act mainly as chemical protection against predators. A new method of non-lethal sampling with subsequent separation using gas chromatography with mass spectrometric detection was proposed for analysis of these volatile defensive secretions. Separation was performed on Rtx-200 column containing fluorinated polysiloxane stationary phase.
View Article and Find Full Text PDFHeteroptera are among the most diverse hemimetabolous insects. Seven infraorders have been recognized within this suborder of Hemiptera. Apart from the well-established sister-group relationship between Cimicomorpha and Pentatomomorpha (= Terheteroptera), the two terminal lineages, the relationships among the other five infraorders are still controversial, of which three (Gerromorpha, Nepomorpha and Leptopodomorpha) are intimately connected to aquatic environments.
View Article and Find Full Text PDFEuropean tits (Paridae) exhibit species-specific levels of initial wariness towards aposematic prey. This wariness may be caused by neophobia, dietary conservatism or innate bias against particular prey traits. We assessed the contribution of these three mechanisms to the behaviour of juvenile tits towards novel palatable prey and novel aposematic prey.
View Article and Find Full Text PDFNew species Alienates thomasi sp. nov. Baňař & Štys is described from Venezuela based on a single female.
View Article and Find Full Text PDFTwo new species Proboscidopirates ericguilberti sp. nov. Baňař & Štys and Proboscidopirates rugulosus sp.
View Article and Find Full Text PDFA new capillary electrophoretic (CE) method has been developed for analysis of 10 selected derivatives of pterin that can occur in the integument (cuticle) of true bugs (Insecta: Hemiptera: Heteroptera), specifically L-sepiapterin, 7,8-dihydroxanthopterin, 6-biopterin, D-neopterin, pterin, isoxanthopterin, leucopterin, xanthopterin, erythropterin and pterin-6-carboxylic acid. Pterin derivatives are responsible for the characteristic warning coloration of some Heteroptera and other insects, signaling noxiousness or unpalatability and are used to discourage potential predators from attacking. Regression analysis defining the parameters significantly affecting CE separation was used to optimize the system (the background electrolyte (BGE) composition, pH value and applied voltage).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2013
A new separation method involving hydrophilic interaction chromatography with tandem mass spectrometric detection has been developed for the analysis of pteridines, namely biopterin, isoxanthopterin, leucopterin, neopterin, xanthopterin and erythropterin in the cuticle of heteropteran insect species. Two columns, Atlantis HILIC Silica and ZIC(®)-HILIC were tested for the separation of these pteridines. The effect of organic modifier content, buffer type, concentration and pH in mobile phase on retention and separation behavior of the selected pteridines was studied and the separation mechanism was also investigated.
View Article and Find Full Text PDFMany of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp.
View Article and Find Full Text PDFVariation in reactions to aposematic prey is common among conspecific individuals of bird predators. It may result from different individual experience but it also exists among naive birds. This variation may possibly be explained by the effect of personality--a complex of correlated, heritable behavioural traits consistent across contexts.
View Article and Find Full Text PDF