Optical coherence tomography (OCT) is a promising tool for intraoperative tissue morphology determination. Several studies suggest that attenuation coefficient derived from the OCT images, can differentiate between tissues of different morphology, such as normal and pathological structures of the brain, skin, and other tissues. In the present study, the depth-resolved method for attenuation coefficient calculation was adopted for the real-world situation of the depth-dependent OCT sensitivity and additive imaging noise with nonzero mean.
View Article and Find Full Text PDFIntroduction: Despite the introduction of increasingly multifaceted diagnostic techniques and the general advances in emergency abdominal and vascular surgery, the outcome of treatment of patients with acute impaired intestinal circulation remains unsatisfactory. The non-invasive and high-resolution technique of optical coherence tomography (OCT) can be used intraoperatively to assess intestine viability and associated conditions that frequently emerge under conditions of impaired blood circulation. This study aims to demonstrate the effectiveness of multimodal (MM) OCT for intraoperative diagnostics of both the microstructure (cross-polarization OCT mode) and microcirculation (OCT angiography mode) of the small intestine wall in patients with acute mesenteric ischemia (AMI).
View Article and Find Full Text PDFA numerical method that compensates image distortions caused by random fluctuations of the distance to an object in spectral-domain optical coherence tomography (SD OCT) has been proposed and verified experimentally. The proposed method is based on the analysis of the phase shifts between adjacent scans that are caused by micrometer-scale displacements and the subsequent compensation for the displacements through phase-frequency correction in the spectral space. The efficiency of the method is demonstrated in model experiments with harmonic and random movements of a scattering object as well as during in vivo imaging of the retina of the human eye.
View Article and Find Full Text PDFA method for numerical estimation and correction of aberrations of the eye in fundus imaging with optical coherence tomography (OCT) is presented. Aberrations are determined statistically by using the estimate based on likelihood function maximization. The method can be considered as an extension of the phase gradient autofocusing algorithm in synthetic aperture radar imaging to 2D optical aberration correction.
View Article and Find Full Text PDFThis paper considers valuable visual assessment criteria for distinguishing between tumorous and non-tumorous tissues, intraoperatively, using cross-polarization OCT (CP OCT)-OCT with a functional extension, that enables detection of the polarization properties of the tissues in addition to their conventional light scattering. The study was performed on 176 human specimens obtained from 30 glioma patients. To measure the degree to which the typical parameters of CP OCT images can be matched to the actual histology, 100 images of tumors and white matter were selected for visual analysis to be undertaken by three "single-blinded" investigators.
View Article and Find Full Text PDF