We analyze the internal conversion dynamics within the and excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.
View Article and Find Full Text PDFDiscerning the impact of the coherent motion of the nuclei on the timing and efficiency of charge transfer at the donor-acceptor interface is essential for designing performance-enhanced optoelectronic devices. Here, we employ an experimental approach using photocurrent detection in coherent multidimensional spectroscopy to excite a donor aromatic macrocycle and collect the charge transferred to a 2D acceptor layer. For this purpose, we prepared a cobalt phthalocyanine-graphene (CoPc-Gr) interface.
View Article and Find Full Text PDFInternal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule.
View Article and Find Full Text PDFThe nature of absorption bandshapes of dibenzoylmethanatoboron difluoride (DBMBF2) dye substituted in ortho-, meta-, and para-positions of the phenyl ring is investigated using DFT and TDDFT with the range-separated hybrid CAM-B3LYP functional and the 6-311G(d,p) basis set. The solvent effects are taken into account within the polarized continuum model. The vibronic bandshape is simulated using a time-dependent linear coupling model with a vertical gradient approach through an original code.
View Article and Find Full Text PDF