Publications by authors named "Pavel Rybochkin"

This study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of VKM Y-2559, VKM Y-2677, and VKM Y-2482 were immobilized in an organosilicon material by using the sol-gel method, resulting in a hybrid biocatalyst. The catalytic activity of the immobilized microorganism mixture was evaluated by employing it as the bioreceptor element of a biosensor.

View Article and Find Full Text PDF

Biomembranes based on an organosilica sol-gel matrix were used to immobilize bacteria VKM B-3302 as part of a biochemical oxygen demand (BOD) biosensor. Diethoxydimethylsilane (DEDMS) and tetraethoxysilane (TEOS) were used as precursors to create the matrix in a 1:1 volume ratio. The use of scanning electron microscopy (SEM) and the low-temperature nitrogen adsorption method (BET) showed that the sol-gel matrix forms a capsule around microorganisms that does not prevent the exchange of substrates and waste products of bacteria to the cells.

View Article and Find Full Text PDF

Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization.

View Article and Find Full Text PDF

The impact of hydrophilic polymers in an organosilica matrix on the features and performance of immobilized methylotrophic yeast cells used as biocatalysts was investigated and described. Yeast cells were immobilized in a matrix made of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) by one-step sol-gel route of synthesis in the presence of polyethylene glycol (PEG) or polyvinyl alcohol (PVA). Organosilica shells were spontaneously built around cells as a result of yeast immobilization at a TEOS to MTES ratio of 85/15 vol% and hydrophilic polymer (PEG or PVA).

View Article and Find Full Text PDF

We have studied immobilization of VKM B-3302 cells in an organosilica sol-gel matrix consisting of tetraethoxysilane, methyltriethoxysilane and polyvinyl alcohol as a structure-modifying agent. Optical microscopy showed that higher amounts of methyltriethoxysilane make the solid material structure softer. In addition, formation of structures, probably, with bacterial cells inside was spotted.

View Article and Find Full Text PDF