Bemis-Murcko scaffolding [1] is a powerful tool for compound clustering and subsequent analysis. Here, using ChEMBL database [2] and RDKit library [3], we have compiled the dataset of known small molecule drugs, their molecular scaffolds and associated medical indications augmented with the interactive interface. We present these data, which can be used by medicinal chemists to find most promising scaffolds for their tasks using an interactive visualization that can help to evaluate both the diversity of known drugs and pharmacological promiscuity of each particular scaffold visually.
View Article and Find Full Text PDFThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.
View Article and Find Full Text PDFDatabase records contain useful information, which is readily available, but, unfortunately, limited compared to the source (publications). Our study reviewed the text fragments supporting the association between the biological macromolecules and diseases from Open Targets to map them on the biological level of study (DNA/RNA, proteins, metabolites). We screened records using a dictionary containing terms related to the selected levels of study, reviewed 600 hits manually and used machine learning to classify 31,260 text fragments.
View Article and Find Full Text PDFIn vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds.
View Article and Find Full Text PDFAn important step in the proteomic analysis of missing proteins is the use of a wide range of tissues, optimal extraction, and the processing of protein material in order to ensure the highest sensitivity in downstream protein detection. This work describes a purification protocol for identifying low-abundance proteins in human chorionic villi using the proposed "1DE-gel concentration" method. This involves the removal of SDS in a short electrophoresis run in a stacking gel without protein separation.
View Article and Find Full Text PDFWithin the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it.
View Article and Find Full Text PDFBackground: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains.
Methods: Compounds were synthesized using the classical organic chemistry methods.
Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4.
View Article and Find Full Text PDFHerein we report the design, synthesis, computational, and experimental evaluation of the antimicrobial activity of fourteen new 3-amino-5-(indol-3-yl) methylene-4-oxo-2-thioxothiazolidine derivatives. The structures were designed, and their antimicrobial activity and toxicity were predicted in silico. All synthesized compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFEnviron Health Perspect
February 2020
Background: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) approaches and computational modeling.
View Article and Find Full Text PDFDementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia.
View Article and Find Full Text PDFDrug-drug interactions (DDIs) severity assessment is a crucial problem because polypharmacy is increasingly common in modern medical practice. Many DDIs are caused by alterations of the plasma concentrations of one drug due to another drug inhibiting and/or inducing the metabolism or transporter-mediated disposition of the victim drug. Accurate assessment of clinically relevant DDIs for novel drug candidates represents one of the significant tasks of contemporary drug research and development and is important for practicing physicians.
View Article and Find Full Text PDFDiscovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required.
View Article and Find Full Text PDFNumerous studies have been published in recent years with acceptable quantitative structure-activity relationship (QSAR) modeling based on heterogeneous data. In many cases, the training sets for QSAR modeling were constructed from compounds tested by different biological assays, contradicting the opinion that QSAR modeling should be based on the data measured by a single protocol. We attempted to develop approaches that help to determine how heterogeneous data should be used for the creation of QSAR models on the basis of different sets of compounds tested by different experimental methods for the same target and the same endpoint.
View Article and Find Full Text PDFDrug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME).
View Article and Find Full Text PDFEstimation of interaction of drug-like compounds with antitargets is important for the assessment of possible toxic effects during drug development. Publicly available online databases provide data on the experimental results of chemical interactions with antitargets, which can be used for the creation of (Q)SAR models. The structures and experimental K and IC values for compounds tested on the inhibition of 30 antitargets from the ChEMBL 20 database were used.
View Article and Find Full Text PDFDiscovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets.
View Article and Find Full Text PDFIn silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL.
View Article and Find Full Text PDFElectroanalysis of myoglobin (Mb) in 10 plasma samples of healthy donors (HDs) and 14 plasma samples of patients with acute myocardial infarction (AMI) was carried out with screen-printed electrodes modified first with multi-walled carbon nanotubes (MWCNT) and then with a molecularly imprinted polymer film (MIP), viz., myoglobin-imprinted electropolymerized poly(o-phenylenediamine). The differential pulse voltammetry (DPV) parameters, such as a maximum amplitude of reduction peak current (A, nA), a reduction peak area (S, nA × V), and a peak potential (P, V), were measured for the MWCNT/MIP-sensors after their incubation with non-diluted plasma.
View Article and Find Full Text PDFVentricular tachyarrhythmia (VT) is one of the most serious adverse drug reactions leading to death. The in vitro assessment of the interaction of lead compounds with HERG potassium channels, which is one of the primary known causes of VT induction, is an obligatory test during drug development. However, experimental and clinical data support the hypothesis that the inhibition of ion channels is not the only mechanism of VT induction.
View Article and Find Full Text PDFIn silico approaches have been widely recognised to be useful for drug discovery. Here, we consider the significance of available databases of medicinal plants and chemo- and bioinformatics tools for in silico drug discovery beyond the traditional use of folk medicines. This review contains a practical example of the application of combined chemo- and bioinformatics methods to study pleiotropic therapeutic effects (known and novel) of 50 medicinal plants from Traditional Indian Medicine.
View Article and Find Full Text PDFDrug-induced myocardial infarction (DIMI) is one of the most serious adverse drug effects that often lead to death. Therefore, the identification of DIMI at the early stages of drug development is essential. For this purpose, the in vitro testing and in silico prediction of interactions between drug-like substances and various off-target proteins associated with serious adverse drug reactions are performed.
View Article and Find Full Text PDF