Publications by authors named "Pavel N Flegontov"

The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga.

View Article and Find Full Text PDF

The kinetoplast genome contains several thousands of minicircles of various sequence classes and several scores of maxicircles. We demonstrated that maxicircles are heterogeneous in clonal cultures of Leishmania major, and, therefore, probably heterogeneous (heteroplasmic) within the kinetoplast. Sequence heterogeneity was observed in a non-coding fragment upstream of the 12S rRNA gene.

View Article and Find Full Text PDF

We discuss here some results which suggest that radically different maxicircle classes coexist within the same kinetoplast. These data, although tentative and incomplete, may provide a new outlook on the kinetoplast genome structure and expression.

View Article and Find Full Text PDF

The maxicircle control region [also termed divergent region (DR)] composed of various repeat elements remains the most poorly studied part of the kinetoplast genome. Only three extensive DR sequences demonstrating no significant similarity were available for trypanosomatids (Leishmania tarentolae, Crithidia oncopelti, Trypanosoma brucei). Recently, extensive DR sequences have been obtained for Leishmania major and Trypanosoma cruzi.

View Article and Find Full Text PDF

The maxicircle divergent region (DR) was partially sequenced in several isolates of Leishmania major. The sequence contains various repeated elements: two types of long GC-rich repeats alternating with clusters of short AT-rich repeats. The arrangement of repeats appears to be similar in the studied Leishmania species and their relative Leptomonas seymouri.

View Article and Find Full Text PDF